CLARREO shortwave observing system simulation experiments of the twenty‐first century: Simulator design and implementation

[1] Projected changes in the Earth system will likely be manifested in changes in reflected solar radiation. This paper introduces an operational Observational System Simulation Experiment (OSSE) to calculate the signals of future climate forcings and feedbacks in top-of-atmosphere reflectance spectra. The OSSE combines simulations from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report for the NCAR Community Climate System Model (CCSM) with the MODTRAN radiative transfer code to calculate reflectance spectra for simulations of current and future climatic conditions over the 21st century. The OSSE produces narrowband reflectances and broadband fluxes, the latter of which have been extensively validated against archived CCSM results. The shortwave reflectance spectra contain atmospheric features including signals from water vapor, liquid and ice clouds, and aerosols. The spectra are also strongly influenced by the surface bidirectional reflectance properties of predicted snow and sea ice and the climatological seasonal cycles of vegetation. By comparing and contrasting simulated reflectance spectra based on emissions scenarios with increasing projected and fixed present-day greenhouse gas and aerosol concentrations, we find that prescribed forcings from increases in anthropogenic sulfate and carbonaceous aerosols are detectable and are spatially confined to lower latitudes. Also, changes in the intertropical convergence zone and poleward shifts in the subsidence zones and the storm tracks are all detectable along with large changes in snow cover and sea ice fraction. These findings suggest that the proposed NASA Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission to measure shortwave reflectance spectra may help elucidate climate forcings, responses, and feedbacks.

[1]  Patrick Minnis,et al.  Changes in Earth's Albedo Measured by Satellite , 2005, Science.

[2]  Yi Huang,et al.  Separation of longwave climate feedbacks from spectral observations , 2010 .

[3]  Alan H. Strahler,et al.  Quality assessment of BRDF/albedo retrievals in MODIS operational system , 2008 .

[4]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[5]  J. Curry,et al.  A parameterization of ice cloud optical properties for climate models , 1992 .

[6]  Alan H. Strahler,et al.  The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research , 1998, IEEE Trans. Geosci. Remote. Sens..

[7]  Francis W. Zwiers,et al.  Detecting and attributing external influences on the climate system: a review of recent advances , 2005 .

[8]  S. Bony,et al.  How Well Do We Understand and Evaluate Climate Change Feedback Processes , 2006 .

[9]  C. Cox Statistics of the sea surface derived from sun glitter , 1954 .

[10]  W. Collins,et al.  The Formulation and Atmospheric Simulation of the Community Atmosphere Model Version 3 (CAM3) , 2006 .

[11]  Robert Atlas,et al.  OSSEs to determine the requirements for space-based lidar winds for weather prediction , 2003, SPIE Defense + Commercial Sensing.

[12]  G. Kopp,et al.  A new, lower value of total solar irradiance: Evidence and climate significance , 2011 .

[13]  Marika M. Holland,et al.  Inherent sea ice predictability in the rapidly changing Arctic environment of the Community Climate System Model, version 3 , 2011 .

[14]  Marika M. Holland,et al.  Future abrupt reductions in the summer Arctic sea ice , 2006 .

[15]  Gail P. Anderson,et al.  MODTRAN4 radiative transfer modeling for atmospheric correction , 1999, Optics & Photonics.

[16]  W. Collins,et al.  The Formulation and Atmospheric Simulation of the Community Atmosphere Model: CAM3 , 2005 .

[17]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[18]  E. Pallé,et al.  Changes in Earth's Reflectance over the Past Two Decades , 2004, Science.

[19]  S. Manabe,et al.  Cloud Feedback Processes in a General Circulation Model , 1988 .

[20]  Michael J. Barnsley,et al.  Global retrieval of bidirectional reflectance and albedo over land , 1997 .

[21]  James G. Anderson,et al.  Optimal Detection of Regional Trends Using Global Data , 2010 .

[22]  A. Strahler,et al.  On the derivation of kernels for kernel‐driven models of bidirectional reflectance , 1995 .

[23]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[24]  Marika M. Holland,et al.  Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss , 2008 .

[25]  K. Bowman,et al.  An Atmospheric Science Observing System Simulation Experiment (OSSE) Environment , 2010 .

[26]  Alexei G. Sankovski,et al.  Special report on emissions scenarios : a special report of Working group III of the Intergovernmental Panel on Climate Change , 2000 .

[27]  William D. Collins,et al.  Parameterization of Generalized Cloud Overlap for Radiative Calculations in General Circulation Models , 2001 .

[28]  P. Pilewskie,et al.  Evaluating the Variability of Earth-reflected Hyperspectral Data Using Principal Component Analysis , 2009 .

[29]  Robert Atlas,et al.  Atmospheric Observations and Experiments to Assess Their Usefulness in Data Assimilation , 1997 .

[30]  G. Meehl,et al.  OVERVIEW OF THE COUPLED MODEL INTERCOMPARISON PROJECT , 2005 .

[31]  G. Stephens Cloud Feedbacks in the Climate System: A Critical Review , 2005 .

[32]  Daniel Bernard Kirk-Davidoff,et al.  Analysis of Sampling Errors for Climate Monitoring Satellites , 2005 .

[33]  C. Fröhlich,et al.  Solar Irradiance Variability Since 1978 , 2007 .

[34]  W. Collins,et al.  Description of the NCAR Community Atmosphere Model (CAM 3.0) , 2004 .

[35]  Arie Shoshani,et al.  The Earth System Grid: Supporting the Next Generation of Climate Modeling Research , 2005, Proceedings of the IEEE.

[36]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[37]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[38]  C. Fröhlich,et al.  Revision of the PMOD Composite during Solar Cycle 21 , 2006 .

[39]  P. Pilewskie,et al.  SI-Traceable Solar Spectral Irradiance Measurements: The NPOESS TSIS Spectral Irradiance Monitor , 2008 .

[40]  D. F. Young,et al.  The predicted CLARREO sampling error of the inter-annual SW variability , 2009 .

[41]  John F. B. Mitchell,et al.  THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research , 2007 .

[42]  K. Taylor,et al.  The Community Climate System Model , 2001 .

[43]  G. Roe,et al.  Why Is Climate Sensitivity So Unpredictable? , 2007, Science.

[44]  William H. Lipscomb,et al.  Scientific description of the sea ice component in the Community Climate System Model , 2004 .

[45]  Thomas S. Pagano,et al.  Moderate Resolution Imaging Spectroradiometer (MODIS) , 1993, Defense, Security, and Sensing.

[46]  C. Lukashin,et al.  CLARREO/RSIS Reference Inter-Calibration Ability and Requirements , 2009 .

[47]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[48]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[49]  A. Slingo A GCM Parameterization for the Shortwave Radiative Properties of Water Clouds , 1989 .

[50]  James W. Hurrell,et al.  Difficulties in Obtaining Reliable Temperature Trends: Reconciling the Surface and Satellite Microwave Sounding Unit Records. , 1998 .

[51]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[52]  Clifford H. Dey,et al.  Observing-Systems Simulation Experiments: Past, Present, and Future , 1986 .

[53]  Stephen S. Leroy,et al.  Determining Longwave Forcing and Feedback Using Infrared Spectra and GNSS Radio Occultation , 2010 .

[54]  R. Dickinson,et al.  The Community Land Model and Its Climate Statistics as a Component of the Community Climate System Model , 2006 .

[55]  Gilles Reverdin,et al.  Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2 , 2000 .

[56]  K. Oleson,et al.  Assessment of global climate model land surface albedo using MODIS data , 2003 .

[57]  Bonnie Light,et al.  A Delta-Eddington Mutiple Scattering Parameterization for Solar Radiation in the Sea Ice Component of the Community Climate System Model , 2007 .

[58]  David R. Doelling,et al.  Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra Satellite. Part II: Validation , 2005 .

[59]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[60]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance. , 2006, Applied optics.

[61]  James J. Hack,et al.  The Climate Sensitivity of the Community Climate System Model Version 3 (CCSM3) , 2006 .

[62]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[63]  Stephen S. Leroy,et al.  Climate Signal Detection Times and Constraints on Climate Benchmark Accuracy Requirements , 2008 .

[64]  W. Collins,et al.  The Community Climate System Model: CCSM3 , 2004 .

[65]  O. Edenhofer,et al.  Mitigation from a cross-sectoral perspective , 2007 .

[66]  James J. Hack,et al.  Cloud feedback in atmospheric general circulation models: An update , 1996 .

[67]  Sandrine Bony,et al.  An Assessment of the Primary Sources of Spread of Global Warming Estimates from Coupled Atmosphere–Ocean Models , 2008 .

[68]  John Andrew Dykema,et al.  Absolute, spectrally-resolved, thermal radiance: a benchmark for climate monitoring from space , 2004 .

[69]  F. X. Kneizys,et al.  AFGL atmospheric constituent profiles (0-120km) , 1986 .

[70]  Bruce A. Wielicki,et al.  Defining Top-of-the-Atmosphere Flux Reference Level for Earth Radiation Budget Studies , 2002 .

[71]  William L. Smith,et al.  A parameterization of ocean surface albedo , 2004 .