Halloysite-based aerogels by bidirectional freezing with mechanical properties, thermal insulation and flame retardancy

[1]  Hanxue Sun,et al.  Carbonized clay pectin-based aerogel for light-to-heat conversion and energy storage , 2022, Applied Clay Science.

[2]  Z. Xin,et al.  Enhancement of cardanol-loaded halloysite for the thermo-oxidative stability and crystallization property of polylactic acid , 2022, Applied Clay Science.

[3]  W. Zhuang,et al.  Lignin demethylation for modifying halloysite nanotubes towards robust phenolic foams with excellent thermal insulation and flame retardancy , 2021, Journal of Applied Polymer Science.

[4]  Yu-Zhong Wang,et al.  Fully biomass-based aerogels with ultrahigh mechanical modulus, enhanced flame retardancy, and great thermal insulation applications , 2021, Composites Part B: Engineering.

[5]  Yafei Zhao,et al.  One-pot synthesis of ultrafine Ni0.13Co0.87P nanoparticles on halloysite nanotubes as efficient catalyst for hydrogen evolution from ammonia borane , 2021, Applied Clay Science.

[6]  Xiaodong Wu,et al.  Preparation and characterization of cellulose/attapulgite composite aerogels with high strength and hydrophobicity , 2021 .

[7]  Le Xie,et al.  Preparation of functionalized halloysite reinforced polyimide composite aerogels with excellent thermal insulation properties , 2021 .

[8]  Tianxi Liu,et al.  Layered double hydroxide/graphene oxide synergistically enhanced polyimide aerogels for thermal insulation and fire-retardancy , 2021 .

[9]  Qijun Sun,et al.  Surface decoration of halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites , 2021, Journal of Materials Science & Technology.

[10]  S. Jafari,et al.  Electrically conductive biocompatible composite aerogel based on nanofibrillated template of bacterial cellulose/polyaniline/nano-clay. , 2021, International journal of biological macromolecules.

[11]  Liping Zhang,et al.  Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties , 2020, Chemical Engineering Journal.

[12]  Tingting Xu,et al.  Ultralight and Hydrophobic Palygorskite-based Aerogels with Prominent Thermal Insulation and Flame Retardancy. , 2020, ACS Applied Materials and Interfaces.

[13]  Yong Zhu,et al.  Excellent flame retardant and thermal insulated palygorskite/wood fiber composite aerogels with improved mechanical properties , 2020 .

[14]  Almahdi A. Alhwaige,et al.  Chitosan/polybenzoxazine/clay mixed matrix composite aerogels: preparation, physical properties, and water absorbency , 2020 .

[15]  Le Xie,et al.  Lightweight, High-Strength, and Anisotropic Structure Composite Aerogel Based on Hydroxyapatite Nanocrystal and Chitosan with Thermal Insulation and Flame Retardant Properties , 2020 .

[16]  Chaodi Xu,et al.  Elastic Aerogels of Cellulose Nanofibers@Metal–Organic Frameworks for Thermal Insulation and Fire Retardancy , 2019, Nano-Micro Letters.

[17]  Yong Ni,et al.  Biomimetic Carbon Tube Aerogel Enables Super-Elasticity and Thermal Insulation , 2019, Chem.

[18]  Jing Li,et al.  Facile preparation of HNT/PVOH aerogels and the construction of PVOH-assisted HNT three-dimensional network , 2019, Journal of Sol-Gel Science and Technology.

[19]  Xiu-li Wang,et al.  A Bifunctional Alginate-Based Composite Hydrogel with Synergistic Pollutant Adsorption and Photocatalytic Degradation Performance , 2019, Industrial & Engineering Chemistry Research.

[20]  Bing Zhang,et al.  Synthesis of Pt Nanocatalyst Supported on Halloysite Nanotubes via Strong Electronic Adsorption for Hydrolytic Dehydrogenation of Ammonia Borane , 2019, Chemistry Letters.

[21]  Siyu Wu,et al.  Hollow‐Structured Materials for Thermal Insulation , 2018, Advanced materials.

[22]  Jun Shen,et al.  Multifunctional Silica Nanotube Aerogels Inspired by Polar Bear Hair for Light Management and Thermal Insulation , 2018, Chemistry of Materials.

[23]  Bing Zhang,et al.  Storing solar energy within Ag-Paraffin@Halloysite microspheres as a novel self-heating catalyst , 2018, Applied Energy.

[24]  L. Bergström,et al.  Fire-Retardant and Thermally Insulating Phenolic-Silica Aerogels. , 2018, Angewandte Chemie.

[25]  M. Fang,et al.  Ultralight and resilient Al2O3 nanotube aerogels with low thermal conductivity , 2018 .

[26]  Dewen Li,et al.  A Thermally Insulating Textile Inspired by Polar Bear Hair , 2018, Advanced materials.

[27]  D. Schiraldi,et al.  Green Approach to Improving the Strength and Flame Retardancy of Poly(vinyl alcohol)/Clay Aerogels: Incorporating Biobased Gelatin. , 2017, ACS applied materials & interfaces.

[28]  Yu-Zhong Wang,et al.  Thermally stable and flame-retardant poly(vinyl alcohol)/montmorillonite aerogel via a facile heat treatment , 2017 .

[29]  L. Berglund,et al.  High-Strength Nanocomposite Aerogels of Ternary Composition: Poly(vinyl alcohol), Clay, and Cellulose Nanofibrils. , 2017, ACS applied materials & interfaces.

[30]  Yu-Zhong Wang,et al.  Biobased Poly(furfuryl alcohol)/Clay Aerogel Composite Prepared by a Freeze-Drying Process , 2016 .

[31]  P. Yuan,et al.  Properties and applications of halloysite nanotubes: recent research advances and future prospects , 2015 .

[32]  Yu-Zhong Wang,et al.  Preparation and flammability of poly(vinyl alcohol) composite aerogels. , 2014, ACS applied materials & interfaces.

[33]  Changren Zhou,et al.  Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue engineering. , 2013, Journal of materials chemistry. B.

[34]  M. Bousmina,et al.  Chitosan–montmorillonite bio-based aerogel hybrid microspheres , 2012 .

[35]  Dan Li,et al.  Biomimetic superelastic graphene-based cellular monoliths , 2012, Nature Communications.

[36]  L. Valdevit,et al.  Ultralight Metallic Microlattices , 2011, Science.

[37]  D. Schiraldi,et al.  Foam-like materials produced from abundant natural resources , 2008 .

[38]  H. Möhwald,et al.  Halloysite clay nanotubes for controlled release of protective agents. , 2008, ACS nano.

[39]  D. Schiraldi,et al.  Biologically Based Fiber-Reinforced/Clay Aerogel Composites , 2008 .

[40]  F. Call Preparation of Dry Clay-Gels by Freeze-drying , 1953, Nature.

[41]  R. C. Mackenzie Clay – Water Relationships , 1953, Nature.