Local best Artificial Bee Colony algorithm with dynamic sub-populations

The Artificial Bee Colony (ABC) algorithm is a powerful continuous optimization tool that has been proposed in the past few years. Many studies have shown the superior performance of ABC when compared to other well-known optimization algorithms. In this paper, the implementation of an ABC algorithm with dynamic sub-populations (ABCDP) is presented. The algorithm is compared against a number of previously proposed ABC algorithms guided by global-best information. The comparison is based on the final solution reached, robustness, and number of successfully solved functions for all the algorithms when applied to the well-known CEC05 benchmark functions.

[1]  Lingling Huang,et al.  A global best artificial bee colony algorithm for global optimization , 2012, J. Comput. Appl. Math..

[2]  Martin Middendorf,et al.  Performance evaluation of artificial bee colony optimization and new selection schemes , 2011, Memetic Comput..

[3]  Junita Mohamad-Saleh,et al.  Enhanced Global-Best Artificial Bee Colony Optimization Algorithm , 2012, 2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation.

[4]  Sam Kwong,et al.  Gbest-guided artificial bee colony algorithm for numerical function optimization , 2010, Appl. Math. Comput..

[5]  Dervis Karaboga,et al.  Parameter Tuning for the Artificial Bee Colony Algorithm , 2009, ICCCI.

[6]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[7]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[8]  Mohammed El-Abd,et al.  Performance assessment of foraging algorithms vs. evolutionary algorithms , 2012, Inf. Sci..

[9]  Yunlong Zhu,et al.  Artificial Bee Colony Algorithm Based On Von Neumann Topology Structure , 2010 .

[10]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[11]  D. Karaboga,et al.  Artificial Bee Colony ( ABC ) , Harmony Search and Bees Algorithms on Numerical Optimization , 2009 .

[12]  Jing J. Liang,et al.  Dynamic multi-swarm particle swarm optimizer with local search , 2005, 2005 IEEE Congress on Evolutionary Computation.

[13]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[14]  Mohammed El-Abd,et al.  Black-box optimization benchmarking for noiseless function testbed using artificial bee colony algorithm , 2010, GECCO '10.

[15]  Tiranee Achalakul,et al.  The best-so-far selection in Artificial Bee Colony algorithm , 2011, Appl. Soft Comput..

[16]  Jing J. Liang,et al.  Dynamic multi-swarm particle swarm optimizer , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[17]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..