Analysis and Entropy Stability of the Line-Based Discontinuous Galerkin Method

We develop a discretely entropy-stable line-based discontinuous Galerkin method for hyperbolic conservation laws based on a flux differencing technique. By using standard entropy-stable and entropy-conservative numerical flux functions, this method guarantees that the discrete integral of the entropy is non-increasing. This nonlinear entropy stability property is important for the robustness of the method, in particular when applied to problems with discontinuous solutions or when the mesh is under-resolved. This line-based method is significantly less computationally expensive than a standard DG method. Numerical results are shown demonstrating the effectiveness of the method on a variety of test cases, including Burgers’ equation and the Euler equations, in one, two, and three spatial dimensions.

[1]  Jean-Luc Guermond,et al.  Implementation of the entropy viscosity method with the discontinuous Galerkin method , 2013 .

[2]  Hans Henrik Brandenborg Sørensen,et al.  Auto‐tuning of level 1 and level 2 BLAS for GPUs , 2013, Concurr. Comput. Pract. Exp..

[3]  J. Peraire,et al.  Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .

[4]  Hendrik Ranocha,et al.  Comparison of Some Entropy Conservative Numerical Fluxes for the Euler Equations , 2017, J. Sci. Comput..

[5]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[6]  Songming Hou,et al.  Solutions of Multi-dimensional Hyperbolic Systems of Conservation Laws by Square Entropy Condition Satisfying Discontinuous Galerkin Method , 2007, J. Sci. Comput..

[7]  Jesse Chan,et al.  On discretely entropy conservative and entropy stable discontinuous Galerkin methods , 2017, J. Comput. Phys..

[8]  P. Chandrashekar,et al.  ENTROPY STABLE SCHEMES FOR COMPRESSIBLE EULER EQUATIONS , 2014 .

[9]  Jaime Peraire,et al.  Entropy-stable hybridized discontinuous Galerkin methods for the compressible Euler and Navier-Stokes equations. , 2018, 1808.05066.

[10]  P. Thomas,et al.  Geometric Conservation Law and Its Application to Flow Computations on Moving Grids , 1979 .

[11]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[12]  Per-Olof Persson High-Order Navier-Stokes Simulations using a Sparse Line-Based Discontinuous Galerkin Method , 2012 .

[13]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[14]  Matteo Parsani,et al.  Entropy Stable Staggered Grid Discontinuous Spectral Collocation Methods of any Order for the Compressible Navier-Stokes Equations , 2016, SIAM J. Sci. Comput..

[15]  David A. Kopriva,et al.  Metric Identities and the Discontinuous Spectral Element Method on Curvilinear Meshes , 2006, J. Sci. Comput..

[16]  Praveen Chandrashekar,et al.  Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations , 2012, ArXiv.

[17]  Per-Olof Persson,et al.  Stage-parallel fully implicit Runge-Kutta solvers for discontinuous Galerkin fluid simulations , 2017, J. Comput. Phys..

[18]  Travis C. Fisher,et al.  High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains , 2013, J. Comput. Phys..

[19]  S. Orszag Spectral methods for problems in complex geometries , 1980 .

[20]  Eitan Tadmor,et al.  The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .

[21]  John H. Kolias,et al.  A CONSERVATIVE STAGGERED-GRID CHEBYSHEV MULTIDOMAIN METHOD FOR COMPRESSIBLE FLOWS , 1995 .

[22]  Florent Renac,et al.  Inviscid and Viscous Simulations of the Taylor-Green Vortex Flow Using a Modal Discontinuous Galerkin Approach , 2012 .

[23]  Chi-Wang Shu,et al.  On a cell entropy inequality for discontinuous Galerkin methods , 1994 .

[24]  Steven H. Frankel,et al.  Entropy Stable Spectral Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces , 2014, SIAM J. Sci. Comput..

[25]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .

[26]  M. Y. Hussaini,et al.  An efficient implicit discontinuous spectral Galerkin method , 2001 .

[27]  Per-Olof Persson,et al.  High-Order DNS and LES Simulations Using an Implicit Tensor-Product Discontinuous Galerkin Method , 2017 .

[28]  Kelly Black,et al.  Spectral element approximation of convection—diffusion type problems , 2000 .

[29]  Per-Olof Persson,et al.  Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods , 2017, J. Comput. Phys..

[30]  Gregor Gassner,et al.  A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and Its Relation to SBP-SAT Finite Difference Methods , 2013, SIAM J. Sci. Comput..

[31]  Philip L. Roe,et al.  Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks , 2009, J. Comput. Phys..

[32]  Leland Jameson,et al.  Numerical Convergence Study of Nearly Incompressible, Inviscid Taylor–Green Vortex Flow , 2005, J. Sci. Comput..

[33]  Spencer J. Sherwin,et al.  A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations , 2017, J. Comput. Phys..

[34]  Robert Michael Kirby,et al.  From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations , 2010, J. Comput. Phys..

[35]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[36]  Bernardo Cockburn,et al.  The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws , 1988 .

[37]  E. Tadmor Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.

[38]  G. Taylor,et al.  Mechanism of the production of small eddies from large ones , 1937 .

[39]  Per-Olof Persson,et al.  Performance tuning of Newton-GMRES methods for discontinuous Galerkin discretizations of the Navier-Stokes equations , 2013 .

[40]  S. A. Orsag,et al.  Small-scale structure of the Taylor-Green vortex , 1984 .

[41]  Chi-Wang Shu,et al.  Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws , 2017, J. Comput. Phys..

[42]  A. Harten On the symmetric form of systems of conservation laws with entropy , 1983 .

[43]  Per-Olof Persson,et al.  A sparse and high-order accurate line-based discontinuous Galerkin method for unstructured meshes , 2012, J. Comput. Phys..

[44]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[45]  Gregor Gassner,et al.  Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations , 2016, J. Comput. Phys..

[46]  Spencer J. Sherwin,et al.  On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES / under-resolved DNS of Euler turbulence , 2017, J. Comput. Phys..

[47]  S. Osher,et al.  On the convergence of difference approximations to scalar conservation laws , 1988 .