Substitution of bridging S2 ligands in the [Nb2(µ-S2)2]4+ core: a simple route to [Nb2(Se2)2]4+, [Nb2(S)(Te2)]4+ and [Nb2(S)2]4+

Reactions of [Nb2(µ-S2)2(dtc)4] 1 (dtc = diethyldithiocarbamate, S2CNEt2) with chalcogen-transfer reagents PEt3Y (Y = Se or Te) were investigated. With PEt3Se, fully substituted [Nb2(µ-Se2)2(dtc)4] 2 forms if a catalytic amount of free PEt3 is present. However PEt3Te gives [Nb2(S)(Te2)(dtc)4] 3 which has a new core with two different chalcogens acting as bridges. The structures of both 2 and 3 were determined by X-ray analysis [2: Nb–Nb 2.974(2), Se–Se 2.303(2). 3: Nb–Nb 2.920(4), Te–Te 2.648(3) A]. Electrochemistry of 2 and 3 was studied and a reversible one-electron oxidation was found for 2, giving a blue ESR-active (19-plet, g = 2.0489, A = 52.5 G) species [Nb2(µ-Se2)2(dtc)4]+ at 638 mV vs. NHE. By contrast in the reaction of [Nb2(µ-S2)2(acac)4] 4 (Hacac = acetylacetone) with PEt3Te only the sulfur abstraction product [Nb2(µ-S)2(acac)4] 5 formed, which could be more directly prepared from 4 and PEt3. Crystal structures of 4 and 5 were determined.

[1]  V. Fedorov,et al.  Synthesis of a new series of Nb(IV) β-diketonates with the Nb2S44+ core: crystal structure of Nb2S4(CF3COCHCOCH3)4 , 1998 .

[2]  G. Lamprecht,et al.  Preparation and Solution Properties of Chalcogenide-Rich Clusters [Mo(3)Y(7)(H(2)O)(6)](4+) (Y = S, Se): Kinetics of PR(3)(3-) Abstraction of Y from &mgr;-(Y(2)(2-)) and H(2)O Substitution by Cl(-) and Br(-). , 1997, Inorganic chemistry.

[3]  V. Fedorov,et al.  Synthesis and structure of Nb2(μ2-Se2)2(Te2I6)2 , 1997 .

[4]  J. Ibers,et al.  Reactions of [M(Se4) 2]2− Anions with TePEt3: 77Se and 125Te Spectra of [MTe.,Se8-n]2− (M = Zn, Cd, Hg; n = 0–4) and Preparation and Crystal Structure of [PPh4]2[Hg(Te2Se2) 2] , 1995 .

[5]  C. G. Young,et al.  Bridging Disulfido Complexes of Molybdenum and Tungsten Formed by Reductive Sulfurization of Oxo-Molybdenum(VI) Complexes and Reductive Desulfurization of Thio(disulfido)-Tungsten(VI) Complexes , 1994 .

[6]  C. Giacovazzo,et al.  Early finding of preferred orientation: a new method , 1994 .

[7]  V. Fedorov,et al.  Nb2S44+ Complexes with 1,1-Dithioacid Ligands , 1994 .

[8]  W. Tremel,et al.  [(I6Te2)Nb(Te2)2Nb(Te2I6)], ein Metallkomplex mit Halogenochalkogenat‐Liganden , 1993 .

[9]  J. Ibers,et al.  Chalcogenide substitution reactions , 1993 .

[10]  C. G. Young,et al.  Structural Aspects of V2( µ;-S2)2(S2CNR2)4 Complexes: the X-Ray Crystal Structure of V2( µ;-S2)2(S2CNEt2)4.2CHBr3 , 1992 .

[11]  V. Fedin,et al.  Mechanochemical synthesis of soluble complexes containing M3S74+ and M3Se74+ fragments from polymeric M3Y7Br4 (M Mo, W; Y S, Se). The crystal structure of (PPN)2W3S7Cl6 , 1991 .

[12]  V. Fedin,et al.  Synthesis, structure, vibrational spectra and chemical properties of the triangular molybdenum and tungsten complexes M3(μ3-S)(μ2-SSe)3X62− (M = Mo, W; X = Cl, Br) , 1990 .

[13]  T. Halbert,et al.  Induced redox reactivity of tetrathiovanadate(V): synthesis of the vanadium(IV) dimer V2(.mu.-S2)2(iso-Bu2NCS2)4 and its structural relationship to the V/S mineral patronite , 1986 .

[14]  D. I. Stuart,et al.  An empirical method for correcting diffractometer data for absorption effects , 1983 .

[15]  G. Wiegers,et al.  PREPARATION, STRUCTURES, AND PROPERTIES OF NIOBIUM CHALCOGENIDE HALIDES, NBX2Y2(X=S,SE-Y=CL,BR,I) , 1979 .

[16]  H. Schäfer,et al.  Beiträge zur Chemie der Elemente Niob und Tantal. LIV. Sulfid‐ und Selenidhalogenide des Niobs , 1966 .

[17]  H. Schnering,et al.  Beiträge zur Chemie der Elemente Niob und Tantal. LV. Die Kristallstruktur von NbS2Cl2 , 1966 .