circRNA_0067717 promotes paclitaxel resistance in nasopharyngeal carcinoma by acting as a scaffold for TRIM41 and p53

[1]  Luyun He,et al.  circREEP3 Drives Colorectal Cancer Progression via Activation of FKBP10 Transcription and Restriction of Antitumor Immunity , 2022, Advanced science.

[2]  Xiaoyu Chen,et al.  METTL14-mediated m6A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis , 2022, Molecular cancer.

[3]  C. Houchen,et al.  Circular RNA ANAPC7 Inhibits Tumor Growth and Muscle Wasting via PHLPP2–AKT–TGF-β Signaling Axis in Pancreatic Cancer , 2022, Gastroenterology.

[4]  I. Bozzoni,et al.  Circular RNA ZNF609/CKAP5 mRNA interaction regulates microtubule dynamics and tumorigenicity , 2021, Molecular cell.

[5]  Yiran Zou,et al.  Circular RNA ACTN4 promotes intrahepatic cholangiocarcinoma progression by recruiting YBX1 to initiate FZD7 transcription. , 2021, Journal of hepatology.

[6]  Yueming Sun,et al.  Circ-GALNT16 restrains colorectal cancer progression by enhancing the SUMOylation of hnRNPK , 2021, Journal of Experimental & Clinical Cancer Research.

[7]  Y. Miao,et al.  FUS-induced circRHOBTB3 facilitates cell proliferation via miR-600/NACC1 mediated autophagy response in pancreatic ductal adenocarcinoma , 2021, Journal of experimental & clinical cancer research : CR.

[8]  S. Fan,et al.  CircSLC7A2 protects against osteoarthritis through inhibition of the miR‐4498/TIMP3 axis , 2021, Cell proliferation.

[9]  L. Attardi,et al.  p53 and Tumor Suppression: It Takes a Network. , 2021, Trends in cell biology.

[10]  Xiaoyuan Yi,et al.  Circ_SMAD4 promotes gastric carcinogenesis by activating wnt/β‐catenin pathway , 2021, Cell proliferation.

[11]  M. Gorospe,et al.  AUF1 ligand circPCNX reduces cell proliferation by competing with p21 mRNA to increase p21 production. , 2021, Nucleic acids research.

[12]  Wenxin Qin,et al.  circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity , 2021, Nature communications.

[13]  F. Chibon,et al.  Targeting MDM2-dependent serine metabolism as a therapeutic strategy for liposarcoma , 2020, Science Translational Medicine.

[14]  W. Xiong,et al.  SIRT1 Regulates N6‐Methyladenosine RNA Modification in Hepatocarcinogenesis by Inducing RANBP2‐Dependent FTO SUMOylation , 2020, Hepatology.

[15]  Yi Sun,et al.  FBXW7 Confers Radiation Survival by Targeting p53 for Degradation. , 2020, Cell reports.

[16]  S. Houser,et al.  Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis , 2019, Nature Communications.

[17]  Q. Zeng,et al.  Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes , 2019, Science Advances.

[18]  Sebastian Kadener,et al.  Past, present, and future of circRNAs , 2019, The EMBO journal.

[19]  W. Xiong,et al.  The MRVI1-AS1/ATF3 signaling loop sensitizes nasopharyngeal cancer cells to paclitaxel by regulating the Hippo–TAZ pathway , 2019, Oncogene.

[20]  Hui Liu,et al.  Guidance of circular RNAs to proteins’ behavior as binding partners , 2019, Cellular and Molecular Life Sciences.

[21]  Hongbo Wang,et al.  Circ‐SERPINE2 promotes the development of gastric carcinoma by sponging miR‐375 and modulating YWHAZ , 2019, Cell proliferation.

[22]  X. Zu,et al.  Circular RNA DOCK1 promotes bladder carcinoma progression via modulating circDOCK1/hsa‐miR‐132‐3p/Sox5 signalling pathway , 2019, Cell proliferation.

[23]  G. Pesole,et al.  Targeting Chemoresistant Tumors: Could TRIM Proteins-p53 Axis Be a Possible Answer? , 2019, International journal of molecular sciences.

[24]  Qiang Zhang,et al.  Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression , 2019, Molecular Cancer.

[25]  B. Zhang,et al.  The sodium pump α1 subunit regulates bufalin sensitivity of human glioblastoma cells through the p53 signaling pathway , 2019, Cell Biology and Toxicology.

[26]  Alexandros Armaos,et al.  RNAct: Protein–RNA interaction predictions for model organisms with supporting experimental data , 2018, Nucleic Acids Res..

[27]  Shu Yang,et al.  CircRNF13 regulates the invasion and metastasis in lung adenocarcinoma by targeting miR-93-5p. , 2018, Gene.

[28]  C. Gao,et al.  A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy , 2018, Oncogene.

[29]  Shuhan Sun,et al.  Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. , 2018, Journal of hepatology.

[30]  Xiong Zou,et al.  The Changing Therapeutic Role of Chemo-radiotherapy for Loco-regionally Advanced Nasopharyngeal Carcinoma from Two/Three-Dimensional Radiotherapy to Intensity-Modulated Radiotherapy: A Network Meta-Analysis , 2017, Theranostics.

[31]  A. Yee,et al.  A Circular RNA Binds To and Activates AKT Phosphorylation and Nuclear Localization Reducing Apoptosis and Enhancing Cardiac Repair , 2017, Theranostics.

[32]  Yang Li,et al.  An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network , 2017, Nature Communications.

[33]  Pei Zhou,et al.  HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy , 2017, Nucleic Acids Res..

[34]  Rolf Backofen,et al.  DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome , 2017, Nature.

[35]  Alessio Colantoni,et al.  FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons , 2017, Nature Communications.

[36]  Faryal Mehwish Awan,et al.  Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity , 2016, Cell Death and Differentiation.

[37]  A. Jemal,et al.  Cancer statistics, 2017 , 2017, CA: a cancer journal for clinicians.

[38]  P. Pandolfi,et al.  Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations , 2016, Cell.

[39]  Janusz M. Bujnicki,et al.  NPDock: a web server for protein–nucleic acid docking , 2015, Nucleic Acids Res..

[40]  G. Shan,et al.  Exon-intron circular RNAs regulate transcription in the nucleus , 2015, Nature Structural &Molecular Biology.

[41]  Zhicheng Zhou,et al.  TRIM59 is up-regulated in gastric tumors, promoting ubiquitination and degradation of p53. , 2014, Gastroenterology.

[42]  N. Rajewsky,et al.  circRNA biogenesis competes with pre-mRNA splicing. , 2014, Molecular cell.

[43]  J. Mariette,et al.  jvenn: an interactive Venn diagram viewer , 2014, BMC Bioinformatics.

[44]  Shanshan Zhu,et al.  Circular intronic long noncoding RNAs. , 2013, Molecular cell.

[45]  Petr Klus,et al.  catRAPID omics: a web server for large-scale prediction of protein–RNA interactions , 2013, Bioinform..

[46]  Michael K. Slevin,et al.  Circular RNAs are abundant, conserved, and associated with ALU repeats. , 2013, RNA.

[47]  Vasant Honavar,et al.  Predicting RNA-Protein Interactions Using Only Sequence Information , 2011, BMC Bioinformatics.

[48]  Jun Cheng,et al.  TRIM29 negatively regulates p53 via inhibition of Tip60. , 2011, Biochimica et biophysica acta.

[49]  D. Lane,et al.  Reactivation of p53: from peptides to small molecules. , 2011, Trends in pharmacological sciences.

[50]  A. Ciechanover,et al.  Narrative Review: Protein Degradation and Human Diseases: The Ubiquitin Connection , 2006, Annals of Internal Medicine.

[51]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..