Parvalbumin affects skeletal muscle trophism through modulation of mitochondrial calcium uptake

[1]  R. Rizzuto,et al.  The molecular complexity of the Mitochondrial Calcium Uniporter. , 2020, Cell calcium.

[2]  A. Michelucci,et al.  Excessive Accumulation of Ca2 + in Mitochondria of Y522S-RYR1 Knock-in Mice: A Link Between Leak From the Sarcoplasmic Reticulum and Altered Redox State , 2019, Front. Physiol..

[3]  P. Ambrogini,et al.  Muscle activity prevents the uncoupling of mitochondria from Ca2+ Release Units induced by ageing and disuse. , 2019, Archives of biochemistry and biophysics.

[4]  H. Westerblad,et al.  SR Ca2+ leak in skeletal muscle fibers acts as an intracellular signal to increase fatigue resistance , 2019, The Journal of general physiology.

[5]  Rick B. Vega,et al.  Sarcolipin Signaling Promotes Mitochondrial Biogenesis and Oxidative Metabolism in Skeletal Muscle , 2018, Cell reports.

[6]  C. Reggiani,et al.  A 3D diffusional-compartmental model of the calcium dynamics in cytosol, sarcoplasmic reticulum and mitochondria of murine skeletal muscle fibers , 2018, PloS one.

[7]  R. Rizzuto,et al.  A MICU1 Splice Variant Confers High Sensitivity to the Mitochondrial Ca2+ Uptake Machinery of Skeletal Muscle. , 2016, Molecular cell.

[8]  K. Dahlman-Wright,et al.  Peroxisome Proliferator-activated Receptor γ Coactivator-1 α Isoforms Selectively Regulate Multiple Splicing Events on Target Genes* , 2016, The Journal of Biological Chemistry.

[9]  B. Schwaller,et al.  Antagonistic Regulation of Parvalbumin Expression and Mitochondrial Calcium Handling Capacity in Renal Epithelial Cells , 2015, PloS one.

[10]  H. Kern,et al.  Age-dependent uncoupling of mitochondria from Ca2+ release units in skeletal muscle , 2015, Oncotarget.

[11]  G. Lanfranchi,et al.  The mitochondrial calcium uniporter controls skeletal muscle trophism in vivo. , 2015, Cell reports.

[12]  B. Ganetzky,et al.  Expression of Multiple Transgenes from a Single Construct Using Viral 2A Peptides in Drosophila , 2014, PloS one.

[13]  C. Neeley,et al.  Mitochondrial Matrix Ca2+ Accumulation Regulates Cytosolic NAD+/NADH Metabolism, Protein Acetylation, and Sirtuin Expression , 2014, Molecular and Cellular Biology.

[14]  R. Rizzuto,et al.  MICU1 and MICU2 Finely Tune the Mitochondrial Ca2+ Uniporter by Exerting Opposite Effects on MCU Activity , 2014, Molecular cell.

[15]  Colin A. Johnson,et al.  Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling , 2013, Nature Genetics.

[16]  M. Sandri Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome☆☆☆ , 2013, The international journal of biochemistry & cell biology.

[17]  Stefano Piccolo,et al.  BMP signaling controls muscle mass , 2013, Nature Genetics.

[18]  S. Moro,et al.  The mitochondrial calcium uniporter is a multimer that can include a dominant‐negative pore‐forming subunit , 2013, The EMBO journal.

[19]  Xuelin Huang,et al.  An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. , 2013, Biostatistics, bioinformatics and biomathematics.

[20]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[21]  D. Turnbull,et al.  Mitochondrial morphology, topology, and membrane interactions in skeletal muscle: a quantitative three-dimensional electron microscopy study. , 2013, Journal of applied physiology.

[22]  B. Spiegelman,et al.  A PGC-1α Isoform Induced by Resistance Training Regulates Skeletal Muscle Hypertrophy , 2012, Cell.

[23]  B. Westermann Bioenergetic role of mitochondrial fusion and fission. , 2012, Biochimica et biophysica acta.

[24]  B. Schwaller,et al.  Inverse Regulation of the Cytosolic Ca2+ Buffer Parvalbumin and Mitochondrial Volume in Muscle Cells via SIRT1/PGC-1α Axis , 2012, PloS one.

[25]  Rosario Rizzuto,et al.  Mitochondria as sensors and regulators of calcium signalling , 2012, Nature Reviews Molecular Cell Biology.

[26]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[27]  Carlo Reggiani,et al.  Fiber types in mammalian skeletal muscles. , 2011, Physiological reviews.

[28]  C. Reggiani,et al.  Differential Effect of Calsequestrin Ablation on Structure and Function of Fast and Slow Skeletal Muscle Fibers , 2011, Journal of biomedicine & biotechnology.

[29]  R. Rizzuto,et al.  A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter , 2011, Nature.

[30]  V. Mootha,et al.  Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter , 2011, Nature.

[31]  O. Shirihai,et al.  The interplay between mitochondrial dynamics and mitophagy. , 2011, Antioxidants & redox signaling.

[32]  H. Park,et al.  High Cleavage Efficiency of a 2A Peptide Derived from Porcine Teschovirus-1 in Human Cell Lines, Zebrafish and Mice , 2011, PloS one.

[33]  C. Mammucari,et al.  Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models , 2011, Skeletal Muscle.

[34]  H. Westerblad,et al.  Increased fatigue resistance linked to Ca2+‐stimulated mitochondrial biogenesis in muscle fibres of cold‐acclimated mice , 2010, The Journal of physiology.

[35]  Beat Schwaller,et al.  Cytosolic Ca2+ buffers. , 2010, Cold Spring Harbor perspectives in biology.

[36]  G. Lanfranchi,et al.  JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy , 2010, The Journal of cell biology.

[37]  G. Shulman,et al.  Regulation of mitochondrial biogenesis. , 2010, Essays in biochemistry.

[38]  Luca Scorrano,et al.  Mitochondrial fission and remodelling contributes to muscle atrophy , 2010, The EMBO journal.

[39]  A. E. Rossi,et al.  Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. , 2008, Molecular biology of the cell.

[40]  M. Sachs,et al.  Site-Specific Release of Nascent Chains from Ribosomes at a Sense Codon , 2008, Molecular and Cellular Biology.

[41]  J. Martinou,et al.  Mitochondrial dynamics: to be in good shape to survive. , 2008, Current molecular medicine.

[42]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[43]  P. García-Rovés,et al.  Exercise-induced Mitochondrial Biogenesis Begins before the Increase in Muscle PGC-1α Expression* , 2007, Journal of Biological Chemistry.

[44]  A. Goldberg,et al.  Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[45]  P. Račay,et al.  Deficiency in parvalbumin, but not in calbindin D-28k upregulates mitochondrial volume and decreases smooth endoplasmic reticulum surface selectively in a peripheral, subplasmalemmal region in the soma of Purkinje cells , 2006, Neuroscience.

[46]  P. Račay,et al.  Parvalbumin deficiency in fast‐twitch muscles leads to increased ‘slow‐twitch type’ mitochondria, but does not affect the expression of fiber specific proteins , 2006, The FEBS journal.

[47]  Amy E Palmer,et al.  Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  A. Goldberg,et al.  Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[49]  M. Berridge,et al.  Calcium: Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature Reviews Molecular Cell Biology.

[50]  G. Yancopoulos,et al.  Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo , 2001, Nature Cell Biology.

[51]  G. Vrbóva,et al.  Deficiency in parvalbumin increases fatigue resistance in fast-twitch muscle and upregulates mitochondria. , 2001, American journal of physiology. Cell physiology.

[52]  M. Berridge,et al.  The versatility and universality of calcium signalling , 2000, Nature Reviews Molecular Cell Biology.

[53]  J. Gillis,et al.  Tetanus relaxation of fast skeletal muscles of the mouse made parvalbumin deficient by gene inactivation , 2000, The Journal of physiology.

[54]  M. Berchtold,et al.  Increase of skeletal muscle relaxation speed by direct injection of parvalbumin cDNA. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[55]  D. Allen,et al.  Relaxation, [Ca2+]i and [Mg2+]i during prolonged tetanic stimulation of intact, single fibres from mouse skeletal muscle. , 1994, The Journal of physiology.

[56]  J. Johnson,et al.  Parvalbumin content and Ca2+ and Mg2+ dissociation rates correlated with changes in relaxation rate of frog muscle fibres. , 1991, The Journal of physiology.

[57]  J. Gillis,et al.  Parvalbumins and muscle relaxation: a computer simulation study , 1982, Journal of Muscle Research & Cell Motility.

[58]  B A Mobley,et al.  Sizes of components in frog skeletal muscle measured by methods of stereology , 1975, The Journal of general physiology.

[59]  A. Loud A QUANTITATIVE STEREOLOGICAL DESCRIPTION OF THE ULTRASTRUCTURE OF NORMAL RAT LIVER PARENCHYMAL CELLS , 1968, The Journal of cell biology.

[60]  J. Henrotte,et al.  A Crystalline Constituent from Myogen of Carp Muscles , 1952, Nature.

[61]  L. Galla,et al.  Exploiting Cameleon Probes to Investigate Organelles Ca2+ Handling. , 2019, Methods in molecular biology.

[62]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[63]  G. Vrbóva,et al.  Prolonged contraction-relaxation cycle of fast-twitch muscles in parvalbumin knockout mice. , 1999, American journal of physiology. Cell physiology.

[64]  U. Seedorf,et al.  [56] Regulation of parvalbumin concentration in mammalian muscle , 1987 .