Non-Commutative Logic I: The Multiplicative Fragment

Abstract We introduce proof nets and sequent calculus for the multiplicative fragment of non-commutative logic, which is an extension of both linear logic and cyclic linear logic. The two main technical novelties are a third switching position for the non-commutative disjunction, and the structure of order variety.

[1]  Jean-Yves Girard,et al.  Towards a geometry of interaction , 1989 .

[2]  V. Michele Abrusci Noncommutative proof nets , 1995 .

[3]  Arnaud Fleury La règle d'échange : Logique linéaire multiplicative tressée , 1996 .

[4]  François Métayer Homology of proof-nets , 1994, Arch. Math. Log..

[5]  J. Lambek The Mathematics of Sentence Structure , 1958 .

[6]  François Fages,et al.  Concurrent Constraint Programming and Non-commutative Logic , 1997, CSL.

[7]  Vincent Danos La Logique Linéaire appliquée à l'étude de divers processus de normalisation (principalement du Lambda-calcul) , 1990 .

[8]  David N. Yetter,et al.  Quantales and (noncommutative) linear logic , 1990, Journal of Symbolic Logic.

[9]  Paul Ruet Logique non-commutative et programmation concurrente par contraintes , 1997 .

[10]  A. Joyal,et al.  Une th6orie combinatoire des s6ries formelles , 1981 .

[11]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[12]  Christian Retoré,et al.  Pomset Logic: A Non-commutative Extension of Classical Linear Logic , 1997, TLCA.

[13]  P. D. Groote,et al.  Partially commutative linear logic: sequent calculus and phase semantics , 1996 .

[14]  Vítězslav Novák Cyclically ordered sets as partial algebras , 1996 .

[15]  Vincent Danos,et al.  The structure of multiplicatives , 1989, Arch. Math. Log..

[16]  Jean-Yves Girard,et al.  On the meaning of logical rules I: syntax vs. semantics , 1998 .

[17]  Paul Ruet,et al.  Non-commutative logic II: sequent calculus and phase semantics , 2000, Mathematical Structures in Computer Science.

[18]  V. Michele Abrusci Phase Semantics and Sequent Calculus for Pure Noncommutative Classical Linear Propositional Logic , 1991, J. Symb. Log..