Incorporating Surface Soil Moisture Information in Error Modeling of TRMM Passive Microwave Rainfall

This study assesses the significance of conditioning the error modeling of The National Aeronautics and Space Administration (NASA)'s Tropical Rainfall Measurement Mission Microwave Imager rainfall algorithm (2A12) to near-surface soil moisture data derived from a land surface model. The term “conditioning” means the model parameters' dependence on soil wetness. The Oklahoma (OK) region is used as the study area due to its relatively low vegetation and smooth terrain and the availability of high-quality in situ hydrometeorological data from the Mesonet network. The study period includes two warm seasons (March to October) from 2009 and 2010. The National Oceanic and Atmospheric Administration/National Severe Storms Laboratory ground radar-based National Mosaic and Quantitative Precipitation Estimation system (NMQ/Q2) is used as high-resolution (5-min/1-km) reference rainfall. The surface wetness conditions (wet, dry, and normal) were determined from surface soil moisture fields simulated by the NASA Catchment Land Surface Model forced with Q2 rainfall fields. A 2-D satellite rainfall error model, SREM2D, is used to provide the ensemble error representation of 2A12 rainfall using two different parameter calibration approaches: conditioning the SREM2D parameters to the surface soil wetness categories versus not. The statistical analysis of model-generated ensembles and associated error metrics show better performance when surface wetness information is used in SREM2D. In terms of quantification, the ensemble rainfall from the conditional SREM2D parameter calibration shows better reference rainfall encapsulation. The conditioning of SREM2D to soil wetness can apply to rainfall rate estimates from other microwave sensors on board low Earth orbiting satellites and is valuable for the forthcoming missions on precipitation (Global Precipitation Measurement) and soil moisture (Soil Moisture Active Passive).

[1]  Filipe Aires,et al.  A Tool to Estimate Land‐Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction , 2011 .

[2]  D. Mocko,et al.  Simulation of high-latitude hydrological processes in the Torne-Kalix basin: PILPS phase 2(e) - 1: Experiment description and summary intercomparisons , 2003 .

[3]  Emmanouil N. Anagnostou,et al.  The Use of TRMM Precipitation Radar Observations in Determining Ground Radar Calibration Biases , 2001 .

[4]  Travis M. Smith,et al.  An Automated Technique to Quality Control Radar Reflectivity Data , 2007 .

[5]  Praveen Kumar,et al.  A catchment‐based approach to modeling land surface processes in a general circulation model: 1. Model structure , 2000 .

[6]  J. Theon,et al.  Tropical rainfall measuring mission (TRMM) , 1987 .

[7]  Witold F. Krajewski,et al.  Radar hydrology: rainfall estimation. , 2002 .

[8]  Vincenzo Levizzani,et al.  Estimation of precipitation from space-based platforms , 2008 .

[9]  R. Koster,et al.  A catchment-based approach to modeling land surface processes in a general circulation model , 2000 .

[10]  R. Scofield,et al.  Status and Outlook of Operational Satellite Precipitation Algorithms for Extreme-Precipitation Events , 2003 .

[11]  Stefan Siegert,et al.  Rank Histograms of Stratified Monte Carlo Ensembles , 2012 .

[12]  Ralph Ferraro,et al.  TRMM 2A12 Land Precipitation Product - Status and Future Plans , 2009 .

[13]  Jian Zhang,et al.  Constructing Three-Dimensional Multiple-Radar Reflectivity Mosaics: Examples of Convective Storms and Stratiform Rain Echoes , 2005 .

[14]  J. McGinley,et al.  Improving QPE and Very Short Term QPF: An Initiative for a Community-Wide Integrated Approach , 2007 .

[15]  Faisal Hossain,et al.  A two-dimensional satellite rainfall error model , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Faisal Hossain,et al.  Assessment of a multidimensional satellite rainfall error model for ensemble generation of satellite rainfall data , 2006, IEEE Geoscience and Remote Sensing Letters.

[17]  Emmanouil N. Anagnostou,et al.  Effects of the radar observation process on inferred rainfall statistics , 1996 .

[18]  Emmanouil N. Anagnostou,et al.  The Effect of Satellite Rainfall Error Modeling on Soil Moisture Prediction Uncertainty , 2011 .

[19]  Eric A. Smith,et al.  Critical Assessment of Microphysical Assumptions within TRMM Radiometer Rain Profile Algorithm Using Satellite, Aircraft, and Surface Datasets from KWAJEX , 2006 .

[20]  Chuntao Liu,et al.  “Warm Rain” in the Tropics: Seasonal and Regional Distributions Based on 9 yr of TRMM Data , 2009 .

[21]  Jian Zhang,et al.  National mosaic and multi-sensor QPE (NMQ) system description, results, and future plans , 2011 .

[22]  G. Huffman,et al.  A Screening Methodology for Passive Microwave Precipitation Retrieval Algorithms , 1998 .

[23]  T. Hamill Interpretation of Rank Histograms for Verifying Ensemble Forecasts , 2001 .

[24]  Faisal Hossain,et al.  Numerical investigation of the impact of uncertainties in satellite rainfall estimation and land surface model parameters on simulation of soil moisture , 2005 .

[25]  G. Villarini,et al.  Sensitivity Studies of the Models of Radar-Rainfall Uncertainties , 2010 .

[26]  Ralph Ferraro,et al.  Status of the TRMM 2A12 Land Precipitation Algorithm , 2010 .

[27]  R. Koster,et al.  The Rhône-Aggregation Land Surface Scheme Intercomparison Project: An Overview , 2002 .

[28]  Nobuhiro Takahashi,et al.  Rain/No-Rain Classification Methods for Microwave Radiometer Observations over Land Using Statistical Information for Brightness Temperatures under No-Rain Conditions , 2005 .

[29]  Thomas M. Hamill,et al.  Verification of Eta–RSM Short-Range Ensemble Forecasts , 1997 .

[30]  W. Petersen,et al.  Global precipitation measurement: Methods, datasets and applications , 2012 .

[31]  M. Manton,et al.  Performance of Satellite Rainfall Estimation Algorithms during TOGA COARE. , 1998 .

[32]  J. Gourley,et al.  Evolving Multisensor Precipitation Estimation Methods: Their Impacts on Flow Prediction Using a Distributed Hydrologic Model , 2011 .

[33]  R. Koster,et al.  Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR‐E) and the Scanning Multichannel Microwave Radiometer (SMMR) , 2007 .

[34]  Emmanouil N. Anagnostou,et al.  Regional Differences in Overland Rainfall Estimation from PR-Calibrated TMI Algorithm , 2005 .

[35]  Matthias Steiner,et al.  Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data , 1995 .

[36]  Edward J. Zipser,et al.  A Cloud and Precipitation Feature Database from Nine Years of TRMM Observations , 2008 .

[37]  Ricardo Todling,et al.  The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0 , 2008 .

[38]  D. Mocko,et al.  Simulation of high latitude hydrological processes in the Torne-Kalix basin : PILPS phase 2(e) - 2: Comparison of model results with observations , 2003 .

[39]  Dong-Bin Shin,et al.  The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors , 2001 .

[40]  E. Anagnostou,et al.  The impact of model and rainfall forcing errors on characterizing soil moisture uncertainty in land surface modeling , 2012 .

[41]  Fumie A. Furuzawa,et al.  Differences of Rainfall Estimates over Land by Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and TRMM Microwave Imager (TMI)—Dependence on Storm Height , 2005 .

[42]  T. Heinemann,et al.  THE EUMETSAT MULTI SENSOR PRECIPITATION ESTIMATE ( MPE ) : CONCEPT AND VALIDATION , 2003 .

[43]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[44]  Marielle Gosset,et al.  An error model for instantaneous satellite rainfall estimates: evaluation of BRAIN‐TMI over West Africa , 2013 .

[45]  Faisal Hossain,et al.  Hydrological model sensitivity to parameter and radar rainfall estimation uncertainty , 2004 .

[46]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[47]  Peter Bauer,et al.  A Next-generation Microwave Rainfall Retrieval Algorithm for use by TRMM and GPM , 2007 .

[48]  R. McCuen,et al.  Evaluation of the Nash-Sutcliffe Efficiency Index , 2006 .

[49]  David P. Yorty,et al.  WHERE ARE THE MOST INTENSE THUNDERSTORMS ON EARTH , 2006 .

[50]  Ralph Ferraro,et al.  Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR‐E microwave land rainfall algorithms , 2003 .

[51]  Michael G. Bosilovich,et al.  Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System, Version 4 , 2005 .

[52]  Yang Hong,et al.  Toward a Framework for Systematic Error Modeling of Spaceborne Precipitation Radar with NOAA/NSSL Ground Radar–Based National Mosaic QPE , 2012 .