Supplementary Cementitious Materials

The current widespread use of calcium silicate or aluminate hydrate binder systems in the construction industry finds its roots in the Antique world where mixtures of calcined lime and finely ground reactive (alumino-)silicate materials were pioneered and developed as competent inorganic binders. Architectural remains of the Minoan civilization (2000-1500 BC) on Crete have shown evidence of the combined use of slaked lime and additions of finely ground potsherds to produce stronger and more durable lime mortars suitable for water-proof renderings in baths, cisterns and aqueducts (Spence and Cook 1983). It is not clear when and where mortar technology evolved to incorporate volcanic pumice and ashes as a functional supplement. A plausible site would be the Akrotiri settlement at Santorin (Greece), where archeological indications of strong ties with the Minoan culture were found and large quantities of suitable highly siliceous volcanic ash were present. This so-called Santorin earth has been used as a pozzolan in the Eastern Mediterranean until recently (Kitsopoulos and Dunham 1996). Evidence of the deliberate use of this and other volcanic materials by the ancient Greeks dates back to at least 500-400 BC, as uncovered at the ancient city of Kamiros, Rhodes (Efstathiadis 1978; Idorn 1997). In the subsequent centuries the technological knowledge was spread to the mainland (Papayianni and Stefanidou 2007) and was eventually adopted and improved by the Romans (Mehta 1987). The Roman alternatives for Santorin earth were volcanic pumices or tuff found in neighboring territories, the most famous ones found in Pozzuoli (Naples), hence the name pozzolan, and in Segni (Latium). Preference was given to natural pozzolan sources, but crushed ceramic waste was frequently used when natural deposits were not locally available. The exceptional lifetime and preservation condition of some of the most famous Roman buildings such as the Pantheon or the Pont du …

[1]  Gemma Rodríguez de Sensale,et al.  Strength development of concrete with rice-husk ash , 2006 .

[2]  P. Dove Reply to Comment on “Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor” , 1990 .

[3]  Martijn A Zwijnenburg,et al.  On the performance of DFT and interatomic potentials in predicting the energetics of (three-membered ring-containing) siliceous materials. , 2007, The journal of physical chemistry. B.

[4]  R. Snellings,et al.  The zeolite–lime pozzolanic reaction: Reaction kinetics and products by in situ synchrotron X-ray powder diffraction , 2009 .

[5]  J. Kubicki,et al.  Silicate glass and mineral dissolution: calculated reaction paths and activation energies for hydrolysis of a q3 si by H3O+ using ab initio methods. , 2006, The journal of physical chemistry. A.

[6]  O. Wallevik,et al.  On the compressive strength development of high-performance concrete and paste—effect of silica fume , 1999 .

[7]  A. Chatterji,et al.  Hydration of Portland Cement , 1965, Nature.

[8]  D. Grubb,et al.  Phosphate immobilization using an acidic type F fly ash. , 2000, Journal of hazardous materials.

[9]  J. Hower,et al.  Characterization of Fly Ash from Low-Sulfur and High-Sulfur Coal Sources: Partitioning of Carbon and Trace Elements with Particle Size , 1999 .

[10]  Maria Stefanidou,et al.  Durability aspects of ancient mortars of the archeological site of Olynthos , 2007 .

[11]  Jamal M. Khatib,et al.  Selected engineering properties of concrete incorporating slag and metakaolin , 2005 .

[12]  Emil Makovicky,et al.  Pozzolanic reactions of six principal clay minerals: Activation, reactivity assessments and technological effects , 1995 .

[13]  J. Pera,et al.  Pozzolanic activity of calcined laterite , 1998 .

[14]  D. J. Thorne,et al.  Composition and pozzolanic properties of pulverised fuel ashes. I. Composition of fly ashes from some British power stations and properties of their component particles , 1965 .

[15]  G. Kakali,et al.  The effect of natural zeolites on the early hydration of Portland cement , 2003 .

[16]  Yitian Xiao,et al.  Ab initio quantum mechanical studies of the kinetics and mechanisms of silicate dissolution: H+(H3O+) catalysis , 1994 .

[17]  X. Querol,et al.  Use of coal fly ash for ceramics: a case study for a large Spanish power station , 1997 .

[18]  J. Pera,et al.  Development of Highly Reactive Metakaolin from Paper Sludge , 1998 .

[19]  G. Kakali,et al.  Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins , 2005 .

[20]  W. E. Cameron Mullite; a substituted alumina , 1977 .

[21]  C. Pantano,et al.  Dissolution of nepheline, jadeite and albite glasses: toward better models for aluminosilicate dissolution , 2001 .

[22]  Asterios Bakolas,et al.  Evaluation of pozzolanic activity and physicomechanical characteristics in metakaolin-lime pastes , 2006 .

[23]  Rami H. Haddad,et al.  The use of oil shale ash in Portland cement concrete , 2003 .

[24]  M. Frías,et al.  Properties of Calcined Clay Waste and its Influence on Blended Cement Behavior , 2008 .

[25]  C. Dobson,et al.  Location of Aluminum in Substituted Calcium Silicate Hydrate (C‐S‐H) Gels as Determined by 29Si and 27Al NMR and EELS , 1993 .

[26]  I. Richardson,et al.  Models for the composition and structure of calcium silicate hydrate (CSH) gel in hardened tricalcium silicate pastes , 1992 .

[27]  A. Roy Sulfur speciation in granulated blast furnace slag: An X-ray absorption spectroscopic investigation , 2009 .

[28]  F. Puertas,et al.  Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes , 2003 .

[29]  W. Fyfe,et al.  Observations on the nature of fly ash particles , 1989 .

[30]  R. L. Sharma,et al.  Influence of mineral additives on the hydration characteristics of ordinary Portland cement , 1999 .

[31]  J. Bijen Benefits of slag and fly ash , 1996 .

[32]  R. Snellings,et al.  Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity , 2009 .

[33]  H. Taylor Chemistry of Cements , 1938, Nature.

[34]  Robert Lewis,et al.  12 – Microsilica as an Addition , 1998 .

[35]  H. J. Jakobsen,et al.  A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy , 2006 .

[36]  Abhijit Mukherjee,et al.  INVESTIGATION OF HYDRAULIC ACTIVITY OF GROUND GRANULATED BLAST FURNACE SLAG IN CONCRETE , 2003 .

[37]  M. François,et al.  Characterization of mullite in silicoaluminous fly ash by XRD, TEM, and 29Si MAS NMR , 2000 .

[38]  M. Daimon,et al.  Hydration of fly ash cement , 2005 .

[39]  J. Pera,et al.  Hydration reaction and hardening of calcined clays and related minerals V. Extension of the research and general conclusions , 1985 .

[40]  R. D. Hooton,et al.  Bridging the Gap Between Research and Standards , 2008 .

[41]  M. A. Yurdusev,et al.  USE OF ZEOLITE, COAL BOTTOM ASH AND FLY ASH AS REPLACEMENT MATERIALS IN CEMENT PRODUCTION , 2004 .

[42]  I. Richardson,et al.  Composition and Microstructure of 20-year-old Ordinary Portland Cement-ground Granulated Blast-furnace Slag Blends Containing 0 to 100% Slag , 2010 .

[43]  Mette Rica Geiker,et al.  Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates , 2008 .

[44]  R. C. Joshi,et al.  Fly Ash in Concrete: Production, Properties and Uses , 1997 .

[45]  Rachel J. Detwiler,et al.  DEVELOPMENT OF MICROSTRUCTURES IN PLAIN CEMENT PASTES HYDRATED AT DIFFERENT TEMPERATURES , 1991 .

[46]  C. Colella,et al.  Use of Zeolitic Tuff in the Building Industry , 2001 .

[47]  Changling He,et al.  Thermal stability and pozzolanic activity of raw and calcined mixed-layer mica/smectite , 2000 .

[48]  B. Kutchko,et al.  Fly ash characterization by SEM–EDS , 2006 .

[49]  H. Khelafi,et al.  Durability of concrete containing a natural pozzolan as defined by a performance-based approach , 2009 .

[50]  Hideki Yamamoto,et al.  Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction , 2002 .

[51]  S. Wild,et al.  Pozzolanic properties of a variety of European clay bricks , 1997 .

[52]  S. Grzeszczyk,et al.  Effect of content and particle size distribution of high-calcium fly ash on the rheological properties of cement pastes , 1997 .

[53]  D.D.L. Chung,et al.  Review: Improving cement-based materials by using silica fume , 2002 .

[54]  J. Marchand,et al.  INFLUENCE OF CURING TEMPERATURE ON CEMENT HYDRATION AND MECHANICAL STRENGTH DEVELOPMENT OF FLY ASH MORTARS , 1997 .

[55]  Duncan Herfort,et al.  Sustainable Development and Climate Change Initiatives , 2008 .

[56]  F. Lea The chemistry of cement and concrete , 1970 .

[57]  D. J. Thorne,et al.  The composition and pozzolanic properties of pulverised fuel ashes , 1966 .

[58]  J. Apps,et al.  Geochemical Stability of Natural Zeolites , 2001 .

[59]  S. Diamond,et al.  Hydration Reactions in Cement Pastes Incorporating Fly Ash and Other Pozzolanic Materials , 1986 .

[60]  John J. Emery,et al.  Glass Content Determination and Strength Development Predictions for Vitrified Blast Furnace Slag , 1983 .

[61]  T. Bakharev,et al.  Geopolymeric materials prepared using Class F fly ash and elevated temperature curing , 2005 .

[62]  C. Page,et al.  Effects of metakaolin, water/binder ratio and interfacial transition zones on the microhardness of cement mortars , 2002 .

[63]  H. El-Didamony,et al.  Metakaolin—lime hydration products , 1984 .

[64]  Emil Makovicky,et al.  Thermal treatment and pozzolanic activity of Na- and Ca-montmorillonite , 1996 .

[65]  R. Iler The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica , 1979 .

[66]  R Uribe-Afif,et al.  Importance of using the natural pozzolans on concrete durability , 2002 .

[67]  Rc Mielenz,et al.  Effect of Calcination on Natural Pozzolans , 1950 .

[68]  J. Ondov,et al.  Chemical studies of stack fly ash from a coal-fired power plant , 1979 .

[69]  A. Filippidis,et al.  Mineralogical and chemical investigation of fly ash from the Main and Northern lignite fields in Ptolemais, Greece , 1992 .

[70]  P. Dove,et al.  Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[71]  F. Goodarzi Characteristics and composition of fly ash from Canadian coal-fired power plants , 2006 .

[72]  K. Scrivener,et al.  Effects of an early or a late heat treatment on the microstructure and composition of inner C-S-H products of Portland cement mortars , 2002 .

[73]  Karen Scrivener,et al.  The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite , 2011 .

[74]  N. Feng,et al.  Shale ash concrete , 1997 .

[75]  A. Tankut,et al.  Use of tuffs from central Turkey as admixture in pozzolanic cements: Assessment of their petrographical properties , 2002 .

[76]  Karen L. Scrivener,et al.  Innovation in use and research on cementitious material , 2008 .

[77]  M. Shannag,et al.  HIGH STRENGTH CONCRETE CONTAINING NATURAL POZZOLAN AND SILICA FUME , 2000 .

[78]  A. Lasaga,et al.  Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution: OH− catalysis , 1996 .

[79]  Jamal M. Khatib,et al.  Pore size distribution of metakaolin paste , 1996 .

[80]  R. L. Hay,et al.  Formation of Zeolites in Open Hydrologic Systems , 2001 .

[81]  Şükrü Yetgin,et al.  Availability of tuffs from northeast of Turkey as natural pozzolan on cement, some chemical and mechanical relationships , 2007 .

[82]  J. Bullard,et al.  Mechanisms of cement hydration , 2011 .

[83]  E. Douglas,et al.  Characterization of ground granulated blast-furnace slags and fly ashes and their hydration in Portland cement blends , 1990 .

[84]  C. Shi,et al.  Influence of the fineness of pozzolan on the strength of lime natural-pozzolan cement pastes , 1994 .

[85]  J. G. Cabrera,et al.  Mechanism of hydration of the metakaolin-lime-water system , 2001 .

[86]  A. Lasaga,et al.  Kinetic justification of the solubility product: application of a general kinetic dissolution model. , 2005, The journal of physical chemistry. B.

[87]  Wilhelm Jander,et al.  Reaktionen im festen Zustande bei höheren Temperaturen. Reaktionsgeschwindigkeiten endotherm verlaufender Umsetzungen , 1927 .

[88]  Susan L. Brantley,et al.  Kinetics of Mineral Dissolution , 2008 .

[89]  L. Divet,et al.  Delayed Ettringite Formation: The Effect of Temperature and Basicity on the Interaction of Sulphate and C-S-H Phase , 1998 .

[90]  C. Warren,et al.  Submicroscopic model of fly ash particles , 1987 .

[91]  Patrick V. Brady,et al.  Kinetics of quartz dissolution at low temperatures , 1990 .

[92]  P. Hewlett,et al.  Lea's chemistry of cement and concrete , 2001 .

[93]  L. Turanli,et al.  Pozzolanic activity of clinoptilolite: A comparative study with silica fume, fly ash and a non-zeolitic natural pozzolan , 2010 .

[94]  Rafat Siddique,et al.  Waste Materials and By-Products in Concrete , 2007 .

[95]  R. Sersale,et al.  Portland-zeolite-cement for minimizing alkali-aggregate expansion , 1987 .

[96]  Jeffrey J. Thomas,et al.  Effect of hydration temperature on the solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pastes , 2003 .

[97]  Robert J. Flatt,et al.  Dissolution theory applied to the induction period in alite hydration , 2010 .

[98]  B. Lothenbach,et al.  Hydration of alkali-activated slag: thermodynamic modelling , 2007 .

[99]  S. Vassilev,et al.  Mineralogy of combustion wastes from coal-fired power stations , 1996 .

[100]  X. Cong,et al.  29Si MAS NMR study of the structure of calcium silicate hydrate , 1996 .

[101]  A. R. Ramsden,et al.  Characterization and analysis of individual fly-ash particles from coal-fired power stations by a combination of optical microscopy, electron microscopy and quantitative electron microprobe analysis , 1982 .

[102]  H. Pöllmann Syntheses, properties and solid solution of ternary lamellar calcium aluminate hydroxi salts (AF m -phases) containing SO 4 2− , CO 3 2− and OH − , 2006 .

[103]  Gilles Mertens,et al.  Early Age Hydration and Pozzolanic Reaction in Natural Zeolite Blended Cements: Reaction Kinetics and Products by In Situ Synchrotron X-ray Powder Diffraction , 2010 .

[104]  M. François,et al.  Characterization of magnetite in silico-aluminous fly ash by SEM, TEM, XRD, magnetic susceptibility, and Mössbauer spectroscopy , 1999 .

[105]  A. Yilmaz,et al.  Use of diatomite as partial replacement for Portland cement in cement mortars , 2009 .

[106]  Chai Jaturapitakkul,et al.  Utilization of bagasse ash as a pozzolanic material in concrete , 2009 .

[107]  A. Lasaga,et al.  The effect of dislocation density on the dissolution rate of quartz , 1990 .

[108]  S. Vassilev,et al.  Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 2. Characterization of ceramic cenosphere and salt concentrates , 2004 .

[109]  J. Hanson,et al.  Formation of ettringite, Ca6Al2(SO4)3(OH)12·26H2O, AFt, and monosulfate, Ca4Al2O6(SO4)·14H2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide—calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction , 2004 .

[110]  I. Richardson,et al.  The incorporation of minor and trace elements into calcium silicate hydrate (CSH) gel in hardened cement pastes , 1993 .

[111]  V. M. Malhotra,et al.  Pozzolanic and cementitious materials , 1996 .

[112]  Emil Makovicky,et al.  Thermal stability and pozzolanic activity of calcined kaolin , 1995 .

[113]  N. Feng,et al.  APPLICATIONS OF NATURAL ZEOLITE TO CONSTRUCTION AND BUILDING MATERIALS IN CHINA , 2005 .

[114]  Jong-Bin Park,et al.  Characteristics of cement mortar with nano-SiO2 particles , 2007 .

[115]  M. Ayub,et al.  Pozzolanic properties of burnt clays , 1988 .

[116]  Sammy Chan,et al.  Comparative study of the initial surface absorption and chloride diffusion of high performance zeolite, silica fume and PFA concretes , 1999 .

[117]  F. Glasser,et al.  Alkali binding in cement pastes: Part I. The C-S-H phase , 1999 .

[118]  J. Benezet,et al.  Grinding and pozzolanic reactivity of quartz powders , 1999 .

[119]  John Bensted,et al.  Structure and Performance of Cements , 2001 .

[120]  L. Pettersson,et al.  Mechanism of Dissolution of Neutral Silica Surfaces: Including Effect of Self-Healing , 2001 .

[121]  C. Ward,et al.  Determination of glass content and estimation of glass composition in fly ash using quantitative X-ray diffractometry , 2006 .

[122]  N. R Buenfeld,et al.  Structure and performance of cements, 2nd edition , 2003 .

[123]  Barbara Lothenbach,et al.  Impact of chloride on the mineralogy of hydrated portland cement systems , 2010 .

[124]  R. Blezard 1 – The History of Calcareous Cements , 1998 .

[125]  A. Bougara,et al.  Reactivity and performance of blastfurnace slags of differing origin , 2010 .

[126]  H. N. Stein,et al.  Influence of silica on the hydration of 3 CaO,SiO2 , 2007 .

[127]  T. Kowald,et al.  Hydration Behaviour, Structure and Morphology of Hydration Phases in Advanced Cement-based Systems Containing Micro and Nanoscale Pozzolanic Additives , 2008 .

[128]  M. Davraz,et al.  Engineering Properties of Amorphous Silica as a New Natural Pozzolan for Use in Concrete , 2005 .

[129]  F. Glasser,et al.  Temperature dependence, 0 to 40 °C, of the mineralogy of Portland cement paste in the presence of calcium carbonate , 2010 .

[130]  Mark E. Davis,et al.  Thermochemical study of the stability of frameworks in high silica zeolites , 1993 .

[131]  Domenico Caputo,et al.  Some advances in understanding the pozzolanic activity of zeolites: The effect of zeolite structure , 2008 .

[132]  V. Drits,et al.  An Improved Model for Structural Transformations of Heat-Treated Aluminous Dioctahedral 2:1 Layer Silicates , 1995 .

[133]  Frank Rendell,et al.  Origin of the pozzolanic effect of rice husks , 2000 .

[134]  N. Y. Mostafa,et al.  Characterization and evaluation of the pozzolanic activity of Egyptian industrial by-products: I: Silica fume and dealuminated kaolin , 2001 .

[135]  A. Lasaga Kinetic theory in the earth sciences , 1998 .

[136]  W. Nocuń-Wczelik,et al.  The tricalcium silicate hydration in the presence of active silica , 1983 .

[137]  M. Rao,et al.  REACTIVITY OF RICE HUSK ASH , 1986 .

[138]  S. Vassilev,et al.  Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 1. Characterization of feed coals and fly ashes☆ , 2003 .

[139]  C. Dobson,et al.  The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase , 1994 .

[140]  Frank Winnefeld,et al.  Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes , 2007 .

[141]  H.-J. Kuzel Initial hydration reactions and mechanisms of delayed ettringite formation in Portland cements , 1996 .

[142]  P. K. Mehta Studies on blended Portland cements containing Santorin earth , 1981 .

[143]  J. D. Robertson,et al.  Petrology, mineralogy, and chemistry of magnetically-separated sized fly ash , 1999 .

[144]  Muhammad Fauzi Mohd. Zain,et al.  Production of rice husk ash for use in concrete as a supplementary cementitious material , 2011 .

[145]  D. M. Roy,et al.  Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete , 2001 .

[146]  V. Malhotra Fly Ash, Slag, Silica Fume, and Rice Husk Ash in Concrete: A Review , 1993 .

[147]  V. Papadakis Effect of fly ash on Portland cement systems. Part II. High-calcium fly ash , 1999 .

[148]  G. Lumpkin,et al.  Micro- and nanochemistry of fly ash from a coal-fired power plant , 2003 .

[149]  S. Nangia,et al.  Reaction rates and dissolution mechanisms of quartz as a function of pH. , 2008, The journal of physical chemistry. A.

[150]  F. Massazza,et al.  10 – Pozzolana and Pozzolanic Cements , 1998 .

[151]  Julian D. Gale,et al.  Theoretical Calculations on Silica Frameworks and Their Correlation with Experiment , 1994 .

[152]  J. Klinowski,et al.  29Si and 27Al magic-angle-spinning NMR studies of the thermal transformation of kaolinite , 1990 .

[153]  R. Swamy Cement Replacement Materials , 2018, Sustainable Sludge Management.

[154]  N. Shah,et al.  Transmission electron microscopy investigation of ultrafine coal fly ash particles. , 2005, Environmental science & technology.

[155]  L. Ottosen,et al.  Possible applications for municipal solid waste fly ash. , 2003, Journal of hazardous materials.

[156]  P. Türker,et al.  Effects of fly ash particle size on strength of Portland cement fly ash mortars , 1998 .

[157]  E. Liebig,et al.  Kaolinit und Montmorillonit als puzzolanische Komponenten in Kalkmörteln : unbehandelt und nach thermischer Aktivierung , 1997 .

[158]  L. Pettersson,et al.  Quantum chemical studies of the effects on silicate mineral dissolution rates by adsorption of alkali metals , 1997 .

[159]  Ali Uçar,et al.  Properties of zeolitic tuff (clinoptilolite) blended portland cement , 2007 .

[160]  The chemistry and mineralogy of some granulated and pelletized blastfurnace slags , 1986 .

[161]  A. C. Dunham,et al.  Heulandite and mordenite-rich tuffs from Greece: a potential source for pozzolanic materials , 1996 .

[162]  M. Davraz,et al.  Reduction of alkali silica reaction risk in concrete by natural (micronised) amorphous silica , 2008 .

[163]  J. Pera,et al.  Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin , 2009 .

[164]  I. Richardson Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume , 2004 .

[165]  Barry E. Scheetz,et al.  Utilization of fly ash , 1998 .

[166]  J. G. Cabrera,et al.  The effect of temperature on the hydration rate and stability of the hydration phases of metakaolin–lime–water systems , 2002 .

[167]  J. Bai,et al.  Metakaolin and calcined clays as pozzolans for concrete: a review , 2001 .

[168]  B. Lothenbach,et al.  The AFm phase in Portland cement , 2007 .

[169]  C. Meyer The greening of the concrete industry , 2009 .

[170]  D. W. Hobbs,et al.  Alkali-silica reaction in concrete , 1988 .

[171]  Mohammad Shekarchi,et al.  Use of natural zeolite as a supplementary cementitious material , 2010 .

[172]  G. Saoût,et al.  Influence of limestone on the hydration of Portland cements , 2008 .

[173]  J. E. Gillott,et al.  Calcined oil sands fine tailings as a supplementary cementing material for concrete , 2004 .

[174]  S. Nangia,et al.  Ab initio investigation of dissolution mechanisms in aluminosilicate minerals. , 2009, The journal of physical chemistry. A.

[175]  C. Shi An overview on the activation of reactivity of natural pozzolans , 2001 .

[176]  A.L.A. Fraaij,et al.  A structural investigation relating to the pozzolanic activity of rice husk ashes , 2008 .

[177]  Luigia Binda,et al.  Study of the pozzolanicity of some bricks and clays , 1997 .

[178]  J. Walther RELATION BETWEEN RATES OF ALUMINOSILICATE MINERAL DISSOLUTION, PH, TEMPERATURE, AND SURFACE CHARGE , 1996 .

[179]  Romildo Dias Toledo Filho,et al.  Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete , 2009 .

[180]  N. Koukouzas,et al.  Mineralogical and elemental composition of fly ash from pilot scale fluidised bed combustion of lignite, bituminous coal, wood chips and their blends , 2007 .

[181]  V. Lilkov,et al.  Hydration process of cement containing fly ash and silica fume: The first 24 hours , 1997 .

[182]  Gilles Mertens,et al.  Calorimetric evolution of the early pozzolanic reaction of natural zeolites , 2010 .

[183]  R. W. Le Maitre,et al.  A Classification of igneous rocks and glossary of terms : recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks , 1989 .

[184]  J. Pera,et al.  Properties of Metakaolin blended cements , 1994 .

[185]  S. A. Greenberg REACTION BETWEEN SILICA AND CALCIUM HYDROXIDE SOLUTIONS. I. KINETICS IN THE TEMPERATURE RANGE 30 TO 85°1 , 1961 .

[186]  J. Bijen,et al.  The reaction of fly ash in concrete a critical examination , 1989 .

[187]  F. Glasser,et al.  Pozzolanic activation of metakaolin , 1992 .

[188]  Fevziye Aköz,et al.  Study of pozzolanic properties of wheat straw ash , 1999 .

[189]  B. Lothenbach,et al.  Thermodynamic modelling of the hydration of Portland cement , 2006 .

[190]  S. Bouaziz,et al.  Formulation of blended cement: Effect of process variables on clay pozzolanic activity , 2009 .

[191]  Ioanna Papayianni,et al.  Strength–porosity relationships in lime–pozzolan mortars , 2006 .

[192]  X. Cong,et al.  29Si and 17O NMR investigation of the structure of some crystalline calcium silicate hydrates , 1996 .

[193]  H. Ou,et al.  Investigation on pozzolanic effect of perlite powder in concrete , 2003 .

[194]  H. Hamdan,et al.  29Si MAS NMR, XRD and FESEM studies of rice husk silica for the synthesis of zeolites , 1997 .

[195]  S. Brantley,et al.  Feldspar dissolution at 25°C and pH 3: Reaction stoichiometry and the effect of cations , 1995 .

[196]  M. F. Rojas,et al.  Study of hydrated phases present in a MK–lime system cured at 60 °C and 60 months of reaction , 2006 .

[197]  E. Gartner Industrially interesting approaches to “low-CO2” cements ☆ , 2004 .

[198]  Y. Nathan,et al.  Characterization of coal fly ash from Israel , 1999 .

[199]  Christopher R. Cheeseman,et al.  Mineralogy and microstructure of sintered lignite coal fly ash , 2003 .

[200]  P. K. Mehta Pozzolanic and Cementitious by-Products in Concrete--Another Look , 1989, "SP-114: Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete: Proceedings of the Third International Conference".

[201]  J. Pera,et al.  Pozzolanic properties of pulverized coal combustion bottom ash , 1999 .

[202]  B. Lothenbach,et al.  The Role of Calcium Carbonate in Cement Hydration , 2007 .

[203]  김용직,et al.  Lea's Chemistry of Cement and Concrete, 4th Edition , 2010 .

[204]  G. M. Idorn,et al.  Concrete progress : from antiquity to third millenium , 1997 .

[205]  G. Biscontin,et al.  Interaction between clay and lime in "cocciopesto" mortars: a study by 29Si MAS spectroscopy , 2004 .

[206]  J. Kubicki,et al.  Molecular Orbital Modeling and Transition State Theory in Geochemistry , 2001 .

[207]  H. Uchikawa,et al.  The mechanism of the hydration in the system C3S-pozzolana , 1980 .

[208]  O. Manz,et al.  Coal fly ash: a retrospective and future look , 1999 .

[209]  S. Barnett,et al.  An XRPD profile fitting investigation of the solid solution between ettringite, Ca6Al2(SO4)3(OH)12.26H2O, and carbonate ettringite, Ca6Al2(CO3)3(OH)12.26H2O , 2001 .

[210]  Barbara Lothenbach,et al.  Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O , 2007 .

[211]  A. Al-Rawas,et al.  Properties of Omani artificial pozzolana (sarooj) , 1998 .

[212]  J. D. Watt,et al.  Composition and pozzolanic properties of pulverised fuel ashes. II. Pozzolanic properties of fly ashes, as determined by crushing strength tests on lime mortars†‡ , 1965 .

[213]  M. Tokyay,et al.  Use of perlite as a pozzolanic addition in producing blended cements , 2007 .

[214]  I. Richardson,et al.  The structure of the calcium silicate hydrate phases present in hardened pastes of white Portland cement/blast-furnace slag blends , 1997 .

[215]  J. Monzó,et al.  Mechanical treatments of fly ashes. Part III: Studies on strength development of ground fly ashes (GFA) — Cement mortars , 1997 .

[216]  Guillaume Habert,et al.  Clay content of argillites: Influence on cement based mortars , 2009 .

[217]  Frank Winnefeld,et al.  The ternary system Portland cement–calcium sulphoaluminate clinker–anhydrite: Hydration mechanism and mortar properties , 2010 .

[218]  Eric H. Oelkers,et al.  General kinetic description of multioxide silicate mineral and glass dissolution , 2001 .

[219]  P. K. Mehta PROPERTIES OF BLENDED CEMENTS MADE FROM RICE HUSK ASH , 1977 .

[220]  Chai Jaturapitakkul,et al.  Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete , 2009 .

[221]  I. Richardson The nature of C-S-H in hardened cements , 1999 .

[222]  K. Knauss,et al.  The dissolution kinetics of quartz as a function of pH and time at 70°C , 1988 .

[223]  A. Hellawell,et al.  The hydration of Portland cement , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[224]  Gilberto Artioli,et al.  Kinetic study of the kaolinite-mullite reaction sequence. Part I: Kaolinite dehydroxylation , 1995 .

[225]  S. Brantley,et al.  The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? , 2003 .

[226]  Randall T. Cygan,et al.  The dissolution kinetics of mixed-cation orthosilicate minerals , 1993 .

[227]  S. Vassilev,et al.  Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 3. Characterization of magnetic and char concentrates , 2004 .

[228]  Guillaume Habert,et al.  Cement Production Technology Improvement Compared to Factor 4 Objectives , 2010 .

[229]  W. Roy,et al.  Coal fly ash: a review of the literature and proposed classification system with emphasis on environmental impacts. Environmental geology notes , 1981 .

[230]  G. C. Cordeiro,et al.  Use of ultrafine rice husk ash with high-carbon content as pozzolan in high performance concrete , 2009 .

[231]  Richard A. Livingston,et al.  Characterization of the induction period in tricalcium silicate hydration by nuclear resonance reaction analysis , 2001 .

[232]  J. Donald Rimstidt,et al.  Mineralogy and Surface Properties of Municipal Solid Waste Ash , 1993 .

[233]  Oliver Lindqvist,et al.  Fly ash characteristics in co-combustion of wood with coal, oil or peat , 1999 .

[234]  J. Escalante,et al.  Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions , 2001 .

[235]  Ryan S. Winburn,et al.  Rietveld quantitative X-ray diffraction analysis of NIST fly ash standard reference materials , 2000, Powder Diffraction.

[236]  R. J. S. Spence,et al.  Building materials in developing countries , 1983 .

[237]  K. M. Alexander Reactivity of Ultrafine Powders Produced from Siliceous Rocks , 1960 .

[238]  P. J. Andersen,et al.  Pozzolanic activity of calcined moler clay , 1990 .

[239]  B. Lothenbach,et al.  Hydration of calcium sulfoaluminate cements — Experimental findings and thermodynamic modelling , 2010 .

[240]  B. Lothenbach,et al.  Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement , 2008 .

[241]  F. Mondragón,et al.  New perspectives for coal ash utilization: synthesis of zeolitic materials☆ , 1990 .

[242]  M. Stamatakis,et al.  Zeolitic tuffs of Kimolos Island, Aegean Sea, Greece and their industrial potential , 1997 .

[243]  I. Richardson The calcium silicate hydrates , 2008 .

[244]  V. Drits,et al.  The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction , 1984, Clay Minerals.

[245]  Mark E. Davis,et al.  Thermochemistry of Pure-Silica Zeolites , 2000 .

[246]  D. Singh,et al.  Physical, chemical, mineralogical, and thermal properties of cenospheres from an ash lagoon , 2001 .

[247]  B. Lothenbach,et al.  Supplementary cementitious materials , 2011 .

[248]  I. Janotka,et al.  Properties and Utilization of Zeolite-Blended Portland Cements , 2003 .

[249]  R. M. Gutiérrez,et al.  Pozzolan obtained by mechanochemical and thermal treatments of kaolin , 2010 .

[250]  J. F. Young,et al.  The hydration of tricalcium silicate in the presence of colloidal silica , 1984 .

[251]  H. Justnes,et al.  Silica Fume in High-Quality Concrete--A Review of Mechanism and Performance , 2007, SP-242: 9th Canmet/ACI Fly Ash Conference.

[252]  Egon Althaus,et al.  Pozzolanic Activity of Volcanic Tuff and Suevite: Effects of Calcination , 1998 .

[253]  Harald Justnes,et al.  Nuclear magnetic resonance (NMR) —a powerful tool in cement and concrete research , 1990 .

[254]  J. Larbi,et al.  Orientation of calcium hydroxide at the portland cement paste-aggregate interface in mortars in the presence of silica fume: A contribution , 1990 .

[255]  U. Sanna,et al.  Assessment of pozzolanic potential in lime–water systems of raw and calcined kaolinic clays from the Donnigazza Mine (Sardinia–Italy) , 2006 .

[256]  H. V. Lauer,et al.  Fractionation and characterization of Texas lignite class ‘F’ fly ash by XRD, TGA, FTIR, and SFM , 1994 .

[257]  R. Boumaza,et al.  Development of a pozzolanic pigment from red mud , 1997 .

[258]  E. Bylaska,et al.  Kinetic Evidence for Five-Coordination in AlOH(aq)2+ Ion , 2005, Science.

[259]  J. Leszczynski,et al.  Lattice Resistance to Hydrolysis of Si−O−Si Bonds of Silicate Minerals: Ab Initio Calculations of a Single Water Attack onto the (001) and (111) β-Cristobalite Surfaces , 2000 .

[260]  C. Shi,et al.  Pozzolanic reaction in the presence of chemical activators. Part I. Reaction kinetics , 2000 .

[261]  C. M. Dobson,et al.  A study of the pozzolanic reaction by solid-state 29Si nuclear magnetic resonance using selective isotopic enrichment , 1995, Journal of Materials Science.

[262]  M. Murat Hydration reaction and hardening of calcined clays and related minerals. I. Preliminary investigation on metakaolinite , 1983 .

[263]  M. Stamatakis,et al.  The physical and mechanical properties of composite cements manufactured with calcareous and clayey Greek diatomite mixtures , 2005 .

[264]  A. Corma,et al.  Rings and strain in pure silica zeolites. , 2006, The journal of physical chemistry. B.

[265]  P. Dove The dissolution kinetics of quartz in aqueous mixed cation solutions , 1999 .

[266]  M. Stamatakis,et al.  The influence of biogenic micro-silica-rich rocks on the properties of blended cements , 2003 .

[267]  P. Chindaprasirt,et al.  Influence of rice husk–bark ash on mechanical properties of concrete containing high amount of recycled aggregates , 2008 .

[268]  S. Hocevar,et al.  Kinetics and mechanism of reaction in the zeolitic tuff-CaOH2O systems at increased temperature , 1978 .

[269]  E. Villar-Cociña,et al.  KINETICS OF THE POZZOLANIC REACTION BETWEEN LIME AND SUGAR CANE STRAW ASH BY ELECTRICAL CONDUCTIVITY MEASUREMENT: A KINETIC-DIFFUSIVE MODEL , 2003 .

[270]  Sérgio Francisco dos Santos,et al.  Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): Influence in the pozzolanic activation , 2009 .

[271]  A. Lavat,et al.  Characterization of ceramic roof tile wastes as pozzolanic admixture. , 2009, Waste management.

[272]  G. Kakali,et al.  Thermal treatment of kaolin : the effect of mineralogy on the pozzolanic activity , 2001 .

[273]  Luís Marcelo Tavares,et al.  Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars , 2008 .

[274]  L. Simonato,et al.  MALIGNANT MESOTHELIOMA AND RADIOLOGICAL CHEST ABNORMALITIES IN TWO VILLAGES IN CENTRAL TURKEY An Epidemiological and Environmental Investigation , 1981, The Lancet.