Pitx2c attenuation results in cardiac defects and abnormalities of intestinal orientation in developing Xenopus laevis.

[1]  Chengyu Liu,et al.  Pitx2c patterns anterior myocardium and aortic arch vessels and is required for local cell movement into atrioventricular cushions. , 2002, Development.

[2]  K. Linask,et al.  Directionality of heart looping: effects of Pitx2c misexpression on flectin asymmetry and midline structures. , 2002, Developmental biology.

[3]  D. L. Weeks,et al.  Transcription factor AP-2 is an essential and direct regulator of epidermal development in Xenopus. , 2002, Developmental biology.

[4]  D. L. Weeks,et al.  Oligonucleotide-based strategies to reduce gene expression. , 2001, Differentiation; research in biological diversity.

[5]  J. Martín,et al.  Regulation of left-right asymmetry by thresholds of Pitx2c activity. , 2001, Development.

[6]  Yanding Zhang,et al.  Differential expression and functional analysis of Pitx2 isoforms in regulation of heart looping in the chick. , 2001, Development.

[7]  J. Murray,et al.  Pitx2 Regulates Procollagen Lysyl Hydroxylase (Plod) Gene Expression , 2001, The Journal of cell biology.

[8]  T. Lepage,et al.  The pitx2 homeobox protein is required early for endoderm formation and nodal signaling. . , 2001, Developmental biology.

[9]  D. L. Weeks,et al.  Distinct roles for TBP and TBP-like factor in early embryonic gene transcription in Xenopus. , 2000, Science.

[10]  Wanmin Song,et al.  Degradation of type IV collagen by matrix metalloproteinases is an important step in the epithelial-mesenchymal transformation of the endocardial cushions. , 2000, Developmental biology.

[11]  Jörg Männer,et al.  Cardiac looping in the chick embryo: A morphological review with special reference to terminological and biomechanical aspects of the looping process , 2000, The Anatomical record.

[12]  D. L. Weeks,et al.  Targeted elimination of zygotic messages in Xenopus laevis embryos by modified oligonucleotides possessing terminal cationic linkages. , 2000, Nucleic acids research.

[13]  H. Yost,et al.  Mesendoderm and left-right brain, heart and gut development are differentially regulated by pitx2 isoforms. , 2000, Development.

[14]  D. L. Weeks,et al.  Confocal imaging of early heart development in Xenopus laevis. , 2000, Developmental biology.

[15]  W. Weninger,et al.  The morphology of heart development in Xenopus laevis. , 2000, Developmental biology.

[16]  H. Steinbeisser,et al.  Pitx2 isoforms: involvement of Pitx2c but not Pitx2a or Pitx2b in vertebrate left–right asymmetry , 2000, Mechanisms of Development.

[17]  S. Miyagawa-Tomita,et al.  Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra- and periocular mesoderm and right pulmonary isomerism. , 1999, Development.

[18]  Concepción Rodríguez-Esteban,et al.  Multiple left-right asymmetry defects in Shh(-/-) mutant mice unveil a convergence of the shh and retinoic acid pathways in the control of Lefty-1. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  M. Rosenfeld,et al.  Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis , 1999, Nature.

[20]  C. Viebahn,et al.  The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. , 1999, Development.

[21]  M. Mercola Embryological basis for cardiac left-right asymmetry. , 1999, Seminars in cell & developmental biology.

[22]  R. Beddington,et al.  Axis Development and Early Asymmetry in Mammals , 1999, Cell.

[23]  J. Rodríguez-Rey,et al.  Pitx2 Participates in the Late Phase of the Pathway Controlling Left-Right Asymmetry , 1998, Cell.

[24]  H. Hamada,et al.  Pitx2, a Bicoid-Type Homeobox Gene, Is Involved in a Lefty-Signaling Pathway in Determination of Left-Right Asymmetry , 1998, Cell.

[25]  C. Tabin,et al.  The Transcription Factor Pitx2 Mediates Situs-Specific Morphogenesis in Response to Left-Right Asymmetric Signals , 1998, Cell.

[26]  J. C. Belmonte,et al.  Pitx2 determines left–right asymmetry of internal organs in vertebrates , 1998, Nature.

[27]  I B Dawid,et al.  Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. , 1998, Developmental biology.

[28]  M. Qiu,et al.  Cloning and expression pattern of chicken Pitx2: a new component in the SHH signaling pathway controlling embryonic heart looping. , 1998, Biochemical and biophysical research communications.

[29]  J. Slack,et al.  FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus. , 1997, Developmental biology.

[30]  D. Srivastava Left, right… which way to turn? , 1997, Nature Genetics.

[31]  K. Sampath,et al.  Functional differences among Xenopus nodal-related genes in left-right axis determination. , 1997, Development.

[32]  H. Yost,et al.  Left-right asymmetry of a nodal-related gene is regulated by dorsoanterior midline structures during Xenopus development. , 1997, Development.

[33]  J. Carey,et al.  Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome , 1996, Nature Genetics.

[34]  H. Yost,et al.  Initiation of vertebrate left–right axis formation by maternal Vg1 , 1996, Nature.

[35]  D. Supp,et al.  Conserved left–right asymmetry of nodal expression and alterations in murine situs inversus , 1996, Nature.

[36]  J. Collignon,et al.  Relationship between asymmetric nodal expression and the direction of embryonic turning , 1996, Nature.

[37]  C. Tabin,et al.  A molecular pathway determining left-right asymmetry in chick embryogenesis , 1995, Cell.

[38]  D. L. Weeks,et al.  Cyclin B mRNA depletion only transiently inhibits the Xenopus embryonic cell cycle. , 1991, Development.

[39]  D. L. Weeks,et al.  Targeted degradation of mRNA in Xenopus oocytes and embryos directed by modified oligonucleotides: studies of An2 and cyclin in embryogenesis. , 1990, Nucleic acids research.

[40]  P. Chomczyński,et al.  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. , 1987, Analytical biochemistry.

[41]  Brian C. Froehler,et al.  Synthesis of DNA via deoxynucleoside H-phosphonate intermediates , 1986, Nucleic Acids Res..

[42]  D. L. Weeks,et al.  Identification and cloning of localized maternal RNAs from xenopus eggs , 1985, Cell.

[43]  J. Faber,et al.  Normal Table of Xenopus Laevis (Daudin) , 1958 .

[44]  D. L. Weeks,et al.  Conserved requirement of Lim1 function for cell movements during gastrulation. , 2003, Developmental cell.

[45]  D. L. Weeks,et al.  Selective degradation of targeted mRNAs using partially modified oligonucleotides. , 2000, Methods in enzymology.

[46]  H. Yost Left-right development from embryos to brains. , 1998, Developmental genetics.

[47]  M. Mercola,et al.  Evolutionary conservation of mechanisms upstream of asymmetric Nodal expression: reconciling chick and Xenopus. , 1998, Developmental genetics.

[48]  D. L. Weeks,et al.  Pathways of degradation and mechanism of action of antisense oligonucleotides in Xenopus laevis embryos. , 1991, Antisense research and development.