Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction

ABSTRACTMany standard seismic data processing and imaging techniques require regularly sampled data. Prestack seismic data are multidimensional signals that can be represented via low-rank fourth-order tensors in the frequency‐space (f‐x) domain. We propose to adopt tensor completion strategies to recover unrecorded observations and to improve the signal-to-noise ratio of prestack seismic volumes. Tensor completion can be posed as an inverse problem and solved by minimizing a convex objective function. The objective function contains two terms: a data misfit and a nuclear norm. The data misfit measures the proximity of the reconstructed seismic data to the observations. The nuclear norm constraints the reconstructed data to be a low-rank tensor. In essence, we solve the prestack seismic reconstruction problem via low-rank tensor completion. The cost function of the problem is minimized using the alternating direction method of multipliers. We present synthetic examples to illustrate the behavior of the al...

[1]  M. Powell A method for nonlinear constraints in minimization problems , 1969 .

[2]  M. Hestenes Multiplier and gradient methods , 1969 .

[3]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[4]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[9]  J. Kruskal Rank, decomposition, and uniqueness for 3-way and n -way arrays , 1989 .

[10]  S. Spitz Seismic trace interpolation in the F-X domain , 1991 .

[11]  D. J. Verschuur,et al.  3D Surface-Related Multiple Elimination And Interpolation , 1998 .

[12]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[13]  Stephen P. Boyd,et al.  A rank minimization heuristic with application to minimum order system approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[14]  Yanghua Wang Seismic trace interpolation in the f‐x‐y domain , 2002 .

[15]  Mauricio D. Sacchi,et al.  Minimum weighted norm interpolation of seismic records , 2004 .

[16]  Mauricio D. Sacchi,et al.  Minimum weighted norm wavefield reconstruction for AVA imaging , 2005 .

[17]  R. Abma,et al.  3D interpolation of irregular data with a POCS algorithm , 2006 .

[18]  G. Golub,et al.  A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies , 2007, Proceedings of the National Academy of Sciences.

[19]  Mauricio D. Sacchi,et al.  Multistep autoregressive reconstruction of seismic records , 2007 .

[20]  Five Dimensional Interpolation , 2008 .

[21]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Daniel Trad,et al.  Five-dimensional interpolation: Recovering from acquisition constraints , 2009 .

[23]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[24]  Ryota Tomioka,et al.  Estimation of low-rank tensors via convex optimization , 2010, 1010.0789.

[25]  Mark Hadley,et al.  The effect of interpolation on imaging and AVO: A Viking case study , 2010 .

[26]  Lynn Burroughs,et al.  Rank-Reduction-Based Trace Interpolation , 2010 .

[27]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[28]  F. Herrmann,et al.  Nonequispaced curvelet transform for seismic data reconstruction: A sparsity-promoting approach , 2010 .

[29]  J. Suykens,et al.  Nuclear Norms for Tensors and Their Use for Convex Multilinear Estimation , 2011 .

[30]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[31]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[32]  Nadia Kreimer,et al.  A Tensor Higher-order Singular Value Decomposition (HOSVD) For Pre-stack Simultaneous Noise-reduction And Interpolation , 2011 .

[33]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[34]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[35]  Nadia Kreimer,et al.  A Comparison of 5D Reconstruction Methods , 2012 .

[36]  Nadia Kreimer,et al.  A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation , 2012 .

[37]  Mauricio D. Sacchi,et al.  Vector reconstruction of multicomponent seismic data , 2013 .

[38]  Mauricio D. Sacchi,et al.  Multidimensional de-aliased Cadzow reconstruction of seismic records , 2013 .

[39]  Mauricio D. Sacchi,et al.  A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions , 2013 .

[40]  Yu Geng,et al.  Dreamlet-based interpolation using POCS method , 2014 .

[41]  Mauricio D. Sacchi,et al.  Robust reduced-rank filtering for erratic seismic noise attenuation , 2015 .

[42]  F. Andersson,et al.  A variational formulation for interpolation of seismic traces with derivative information , 2015 .

[43]  Yanfei Wang,et al.  Accelerating seismic interpolation with a gradient projection method based on tight frame property of curvelet , 2015 .