Feedback control of nonlinear differential difference equation systems

[1]  O Smith,et al.  CLOSER CONTROL OF LOOPS WITH DEAD TIME , 1957 .

[2]  D. W. Ross,et al.  An Optimal Control Problem for Systems with Differential-Difference Equation Dynamics , 1969 .

[3]  Moustafa A. Soliman,et al.  Optimal feedback control for linear-quadratic systems having time delays† , 1972 .

[4]  G. Nazaroff,et al.  Stability and stabilization of linear differential delay systems , 1973 .

[5]  H. Koivo,et al.  Modal characterizations of controllability and observability in time delay systems , 1976 .

[6]  W. Harmon Ray,et al.  Distributed parameter systems: Identification, estimation, and control , 1978 .

[7]  Babatunde A. Ogunnaike,et al.  Multivariable controller design for linear systems having multiple time delays , 1979 .

[8]  Coleman B. Brosilow,et al.  The structure and design of Smith predictors from the viewpoint of inferential control , 1979 .

[9]  K. Vit Smith-like predictor for control of parameter-distributed processes , 1979 .

[10]  Carlos E. Garcia,et al.  Internal model control. A unifying review and some new results , 1982 .

[11]  George Stephanopoulos,et al.  Chemical Process Control: An Introduction to Theory and Practice , 1983 .

[12]  A. Manitius,et al.  Computation of closed loop eigenvalues associated with the optimal regulator problem for functional differential equations , 1983, The 22nd IEEE Conference on Decision and Control.

[13]  D. Seborg,et al.  A theoretical analysis of Smith and analytical predictors , 1986 .

[14]  Process Modeling , 1986 .

[15]  C. Kravaris,et al.  Nonlinear State Feedback Synthesis by Global Input/Output Linearization , 1986, 1986 American Control Conference.

[16]  W. H. Ray,et al.  High‐Performance multivariable control strategies for systems having time delays , 1986 .

[17]  G. Payre,et al.  Computation of Eigenvalues associated with functional differential equations , 1987 .

[18]  J. J. Monge,et al.  THE EFFECT OF OPERATING VARIABLES ON THE DYNAMICS OF CATALYTIC CRACKING PROCESSES , 1987 .

[19]  Thomas F. Edgar,et al.  The generalized analytical predictor , 1987 .

[20]  D. Seborg,et al.  Control strategy for single-input single-output non-linear systems with time delays , 1988 .

[21]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[22]  Costas Kravaris,et al.  Deadtime compensation for nonlinear processes , 1989 .

[23]  Costas J. Spanos,et al.  Advanced process control , 1989 .

[24]  P. Khargonekar,et al.  Approximation of infinite-dimensional systems , 1989 .

[25]  Jonathan R. Partington,et al.  Approximation of delay systems by fourier-laguerre series , 1991, Autom..

[26]  B. Wahlberg System identification using Laguerre models , 1991 .

[27]  Christos Georgakis,et al.  Dynamic simulator for a Model IV fluid catalytic cracking unit , 1993 .

[28]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[29]  Yongqing Liu,et al.  An improved Razumikhin-type theorem and its applications , 1994, IEEE Trans. Autom. Control..

[30]  Dale E. Seborg,et al.  Time delay compensation for nonlinear processes , 1994 .

[31]  B. Lehman,et al.  Vibrational Control of Chemical Reactions in a CSTR with Delayed Recycle Stream , 1995 .

[32]  Prodromos Daoutidis,et al.  DYNAMIC FEEDFORWARD/OUTPUT FEEDBACK CONTROL OF NONLINEAR PROCESSES , 1995 .

[33]  A. Arbel,et al.  Dynamic and control of fluidized catalytic crackers. 1: Modeling of the current generation of FCC`s , 1995 .

[34]  Ronald C. Sorensen,et al.  Modifications to model IV fluid catalytic cracking units to improve dynamic performance , 1995 .

[35]  A. Arbel,et al.  Dynamics and Control of Fluidized Catalytic Crackers. 3. Designing the Control System: Choice of Manipulated and Measured Variables for Partial Control , 1996 .

[36]  P. Daoutidis,et al.  Feedback Control of Hyperbolic PDE Systems , 1996 .

[37]  P. Daoutidis,et al.  Robust control of multivariable two-time-scale nonlinear systems , 1997 .

[38]  M. Soroush Nonlinear state-observer design with application to reactors , 1997 .

[39]  A. Teel Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem , 1998, IEEE Trans. Autom. Control..