A theoretical study of membrane constraint in polymer-electrolyte fuel cells

A mathematical model is developed that examines the effect of having a constrained membrane in a fuel cell. During operation, a polymer-electrolyte fuel-cell membrane is prone to swell but is unable to do so by system design. This builds up a stress that affects transport in, and the properties of, the membrane. This report is the first to incorporate such effects into a macrohomogeneous model. Both the physical and mathematical effects are described. Results include the magnitude of constraint, the change in water content of the membrane attributed to constraint, and one-dimensional simulations showing the effect of constraint on the water balance of the fuel cell. The paper demonstrates the need for considering membrane constraint both in modeling and experimental studies of fuel cells. © 2004 American Institute of Chemical Engineers AIChE J, 50: 3215–3226, 2004

[1]  In-Hwan Oh,et al.  Characteristics of the PEMFC Repetitively Brought to Temperatures below 0°C , 2003 .

[2]  Jeremy P. Meyers,et al.  Simulation of the Direct Methanol Fuel Cell II. Modeling and Data Analysis of Transport and Kinetic Phenomena , 2002 .

[3]  Ulrich Stimming,et al.  ELECTROPHYSICAL PROPERTIES OF POLYMER ELECTROLYTE MEMBRANES : A RANDOM NETWORK MODEL , 1997 .

[4]  E. Robens,et al.  Application of coupled thermal analysis techniques to thermodynamic studies of water interactions with a compressible ionic polymer matrix , 1984 .

[5]  K. Mauritz,et al.  A water sorption isotherm model for ionomer membranes with cluster morphologies , 1985 .

[6]  R. Yeo Dual cohesive energy densities of perfluorosulphonic acid (Nafion) membrane , 1980 .

[7]  A. Weber,et al.  Transport in Polymer-Electrolyte Membranes II. Mathematical Model , 2004 .

[8]  J. Hinatsu,et al.  Water Uptake of Perfluorosulfonic Acid Membranes from Liquid Water and Water Vapor , 1994 .

[9]  Johna Leddy,et al.  Density of nafion exchanged with transition metal complexes and tetramethyl ammonium, ferrous, and hydrogen ions: commercial and recast films. , 2002, Analytical chemistry.

[10]  E. Michaelides,et al.  Transport processes of water and protons through micropores , 1998 .

[11]  Peter N. Pintauro,et al.  Mass transport of electrolytes in membranes. 1. Development of mathematical transport model , 1984 .

[12]  T. Fuller,et al.  Water and Thermal Management in Solid‐Polymer‐Electrolyte Fuel Cells , 1993 .

[13]  T. Springer,et al.  Water Uptake by and Transport Through Nafion® 117 Membranes , 1993 .

[14]  A. Eisenberg,et al.  Physical properties and supermolecular structure of perfluorinated ion‐containing (nafion) polymers , 1977 .

[15]  S. Paddison The modeling of molecular structure and ion transport in sulfonic acid based ionomer membranes , 2001 .

[16]  Adam Z. Weber,et al.  Transport in Polymer-Electrolyte Membranes III. Model Validation in a Simple Fuel-Cell Model , 2004 .

[17]  P. Ekdunge,et al.  Oxygen and hydrogen permeation properties and water uptake of Nafion® 117 membrane and recast film for PEM fuel cell , 1997 .

[18]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[19]  A. Kornyshev,et al.  Mechanisms of Proton Conductance in Polymer Electrolyte Membranes , 2001 .

[20]  Gérard Gebel,et al.  Structure and related properties of solution-cast perfluorosulfonated ionomer films , 1987 .

[21]  Chao-Yang Wang,et al.  Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells , 2000 .

[22]  M. Verbrugge,et al.  Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte , 1991 .

[23]  J. C. Amphlett,et al.  Incorporation of voltage degradation into a generalised steady state electrochemical model for a PEM fuel cell , 2002 .

[24]  Adam Z. Weber,et al.  Transport in Polymer-Electrolyte Membranes I. Physical Model , 2004 .

[25]  A. Hopfinger,et al.  Simple model for clustering and ionic transport in ionomer membranes , 1984 .

[26]  T. Nguyen,et al.  The rate of isothermal hydration of polyperfluorosulfonic acid membranes , 1998 .

[27]  H. Gasteiger Fundamental Research and Development Challenges in Polymer Electrolyte Fuel Cell Technology , 2002 .

[28]  Jeremy P. Meyers,et al.  Simulation of the Direct Methanol Fuel Cell I. Thermodynamic Framework for a Multicomponent Membrane , 2002 .

[29]  Ravindra Datta,et al.  Sorption in Proton-Exchange Membranes An Explanation of Schroeder’s Paradox , 2003 .

[30]  G. Gebel,et al.  Swelling study of perfluorosulphonated ionomer membranes , 1993 .

[31]  T. Gierke,et al.  Elastic theory for ionic clustering in perfluorinated ionomers , 1982 .

[32]  A. Eisenberg Clustering of Ions in Organic Polymers. A Theoretical Approach , 1970 .

[33]  N. E. Vanderborgh,et al.  Temperature dependence of water content and proton conductivity in polyperfluorosulfonic acid membranes , 1987 .

[34]  C. Wan,et al.  An innovative process for PEMFC electrodes using the expansion of Nafion film , 2003 .

[35]  Sia Nemat-Nasser,et al.  Micromechanical analysis of ionic clustering in Nafion perfluorinated membrane , 2000 .

[36]  Ralph E. White,et al.  A water and heat management model for proton-exchange-membrane fuel cells , 1993 .