Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low voltage organic transistors

Biodegradability, low-voltage operation, and flexibility are important trends for the future organic electronics. High-capacitance dielectrics are essential for low-voltage organic field-effect transistors. Here we report the application of environmental-friendly cellulose nanopapers as high-capacitance dielectrics with intrinsic ionic conductivity. Different with the previously reported liquid/electrolyte-gated dielectrics, cellulose nanopapers can be applied as all-solid dielectrics without any liquid or gel. Organic field-effect transistors fabricated with cellulose nanopaper dielectrics exhibit good transistor performances under operation voltage below 2 V, and no discernible drain current change is observed when the device is under bending with radius down to 1 mm. Interesting properties of the cellulose nanopapers, such as ionic conductivity, ultra-smooth surface (~0.59 nm), high transparency (above 80%) and flexibility make them excellent candidates as high-capacitance dielectrics for flexible, transparent and low-voltage electronics.Next-generation organic electronics require flexible organic field effect transistors that show low-voltage operation and are biodegradable. Here, Huang and co-workers demonstrate high-performance transistors that utilize solid-state ionic conductive cellulose nanopaper as the dielectric.

[1]  Magnus Berggren,et al.  Polyelectrolyte‐Gated Organic Complementary Circuits Operating at Low Power and Voltage , 2011, Advanced materials.

[2]  Peter Wasserscheid,et al.  Cellulose‐Based Ionogels for Paper Electronics , 2014 .

[3]  Yi Cui,et al.  Transparent and conductive paper from nanocellulose fibers , 2013 .

[4]  Zhiqiang Fang,et al.  Biodegradable transparent substrates for flexible organic-light-emitting diodes , 2013 .

[5]  M. Kaltenbrunner,et al.  Ultraflexible organic photonic skin , 2016, Science Advances.

[6]  T. Someya,et al.  Flexible organic transistors and circuits with extreme bending stability. , 2010, Nature materials.

[7]  Se Hyun Kim,et al.  Electrolyte‐Gated Transistors for Organic and Printed Electronics , 2013, Advanced materials.

[8]  Joseph Miragliotta,et al.  Hydroxy-terminated organic semiconductor-based field-effect transistors for phosphonate vapor detection. , 2007, Journal of the American Chemical Society.

[9]  Tobin J Marks,et al.  Sigma-pi molecular dielectric multilayers for low-voltage organic thin-film transistors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Ute Zschieschang,et al.  Low-voltage organic transistors with steep subthreshold slope fabricated on commercially available paper , 2015 .

[11]  Hongli Zhu,et al.  Highly transparent and flexible nanopaper transistors. , 2013, ACS nano.

[12]  Gui Yu,et al.  Functional Organic Field‐Effect Transistors , 2010, Advanced materials.

[13]  Weidong Zhou,et al.  High-performance green flexible electronics based on biodegradable cellulose nanofibril paper , 2015, Nature Communications.

[14]  Tobin J. Marks,et al.  σ-π molecular dielectric multilayers for low-voltage organic thin-film transistors , 2005 .

[15]  Takao Someya,et al.  Organic Electronics on Banknotes , 2011, Advanced materials.

[16]  Kevin C. See,et al.  Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors. , 2009, Nature materials.

[17]  Akira Isogai,et al.  Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials , 2013, Journal of Wood Science.

[18]  Hee Taek Yi,et al.  Ultra-flexible solution-processed organic field-effect transistors , 2012, Nature Communications.

[19]  L. Sabbatini,et al.  Plain poly(acrylic acid) gated organic field-effect transistors on a flexible substrate. , 2013, ACS applied materials & interfaces.

[20]  Jun Zhou,et al.  Paper‐Based Active Tactile Sensor Array , 2015, Advanced materials.

[21]  Allister F. McGuire,et al.  Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics , 2017, Proceedings of the National Academy of Sciences.

[22]  F. Fan,et al.  Chromosomal aberrations and DNA damage in human populations exposed to the processing of electronics waste , 2009, Environmental science and pollution research international.

[23]  Pedro Barquinha,et al.  Recyclable, Flexible, Low‐Power Oxide Electronics , 2013 .

[24]  A. Dodabalapur,et al.  A soluble and air-stable organic semiconductor with high electron mobility , 2000, Nature.

[25]  L. Berglund,et al.  Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. , 2010, Nature nanotechnology.

[26]  Se Hyun Kim,et al.  Low-operating-voltage pentacene field-effect transistor with a high-dielectric-constant polymeric gate dielectric , 2006 .

[27]  Mihai Irimia-Vladu,et al.  “Green” Electronics: Biodegradable and Biocompatible Materials and Devices for Sustainable Future , 2014 .

[28]  Zhiqiang Fang,et al.  fabrications , properties , and device applications , 2013 .

[29]  Zhiqiang Fang,et al.  Transparent paper: fabrications, properties, and device applications , 2014 .

[30]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[31]  Tobin J Marks,et al.  High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. , 2010, Chemical reviews.

[32]  A. Dufresne,et al.  Review of recent research on flexible multifunctional nanopapers. , 2017, Nanoscale.

[33]  Subhasis Ghosh,et al.  Optimization of surface morphology to reduce the effect of grain boundaries and contact resistance in small molecule based thin film transistors , 2012 .

[34]  Daoben Zhu,et al.  Multi‐Functional Integration of Organic Field‐Effect Transistors (OFETs): Advances and Perspectives , 2013, Advanced materials.

[35]  YuHuang Wang,et al.  Covalently functionalized double-walled carbon nanotubes combine high sensitivity and selectivity in the electrical detection of small molecules. , 2013, Journal of the American Chemical Society.

[36]  E. Fortunato,et al.  Complementary Metal Oxide Semiconductor Technology With and On Paper , 2011, Advanced materials.

[37]  Yoshihide Fujisaki,et al.  Transparent Nanopaper‐Based Flexible Organic Thin‐Film Transistor Array , 2014 .

[38]  E. Lizundia,et al.  Cu-coated cellulose nanopaper for green and low-cost electronics , 2016, Cellulose.

[39]  E. Fortunato,et al.  Reusable Cellulose‐Based Hydrogel Sticker Film Applied as Gate Dielectric in Paper Electrolyte‐Gated Transistors , 2017 .

[40]  Adrian M. Ionescu,et al.  Tunnel field-effect transistors as energy-efficient electronic switches , 2011, Nature.

[41]  Hongtao Yuan,et al.  High‐Density Carrier Accumulation in ZnO Field‐Effect Transistors Gated by Electric Double Layers of Ionic Liquids , 2009 .

[42]  Wenping Hu,et al.  Organic field-effect transistor-based gas sensors. , 2015, Chemical Society reviews.

[43]  E. Fortunato,et al.  Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors , 2014, Nanotechnology.

[44]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[45]  S. Rhee,et al.  Metal–semiconductor contact in organic thin film transistors , 2008 .

[46]  E. Lizundia,et al.  Crystallization, structural relaxation and thermal degradation in Poly(L-lactide)/cellulose nanocrystal renewable nanocomposites. , 2015, Carbohydrate polymers.

[47]  Masaya Nogi,et al.  Optically Transparent Nanofiber Paper , 2009 .

[48]  Zhiqiang Fang,et al.  Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. , 2016, Chemical reviews.

[49]  D. Antoniadis,et al.  Design of Si/SiGe heterojunction complementary metal-oxide-semiconductor transistors , 1996 .

[50]  Bo Zhang,et al.  Materials for Printable, Transparent, and Low‐Voltage Transistors , 2011 .

[51]  Ute Zschieschang,et al.  Low-voltage organic transistors with an amorphous molecular gate dielectric , 2004, Nature.

[52]  B. Kippelen,et al.  Stable low-voltage operation top-gate organic field-effect transistors on cellulose nanocrystal substrates. , 2015, ACS applied materials & interfaces.

[53]  J. Robertson High dielectric constant oxides , 2004 .

[54]  Martti Toivakka,et al.  A multilayer coated fiber-based substrate suitable for printed functionality , 2009 .

[55]  Henry Eyring,et al.  Advances and Perspectives , 1975 .

[56]  J. Han,et al.  Layered Na2/3Ni1/3Mn2/3O2 as electrode material with two redox active transition metals for high performance supercapacitor , 2017 .

[57]  R. Österbacka,et al.  Paper Electronics , 2011, Advanced materials.

[58]  K. Tsukagoshi,et al.  Solution-processed organic crystals for field-effect transistor arrays with smooth semiconductor/dielectric interface on paper substrates , 2012 .

[59]  F. Carrillo,et al.  Crystallinity changes in lyocell and viscose-type fibres by caustic treatment , 2002 .

[60]  Brett H Robinson,et al.  E-waste: an assessment of global production and environmental impacts. , 2009, The Science of the total environment.

[61]  Yan Ma,et al.  Thermally Stable, Biocompatible, and Flexible Organic Field‐Effect Transistors and Their Application in Temperature Sensing Arrays for Artificial Skin , 2015 .

[62]  Jiyoul Lee,et al.  Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. , 2008, Nature materials.

[63]  Daniel Moses,et al.  Beyond the metal-insulator transition in polymer electrolyte gated polymer field-effect transistors , 2006, Proceedings of the National Academy of Sciences.

[64]  F. Ren,et al.  Low-voltage indium gallium zinc oxide thin film transistors on paper substrates , 2010 .