Quantum Versus Classical Entanglement: Eliminating the Issue of Quantum Nonlocality

We analyze interrelation of quantum and classical entanglement. The latter notion is widely used in classical optic simulation of some quantum-like features of light. We criticize the common interpretation that "quantum nonlocality" is the basic factor differing quantum and classical realizations of entanglement. Instead, we point to the breakthrough Grangier et al. experiment on coincidence detection which was done in 1986 and played the crucial role in rejection of (semi-)classical field models in favor of quantum mechanics. Classical entanglement sources produce light beams with the coefficient of second order coherence $g^{(2)}(0) \geq 1.$ This feature of classical entanglement is obscured by using intensities of signals in different channels, instead of counting clicks of photo-detectors. Interplay between intensity and clicks counting is not just a technicality. We elevate this issue to the high foundational level.

[1]  Arkady Plotnitsky,et al.  Niels Bohr and Complementarity: An Introduction , 2012 .

[2]  P. Grangier,et al.  Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences , 1986 .

[3]  Arkady Plotnitsky,et al.  Spooky predictions at a distance: reality, complementarity and contextuality in quantum theory , 2019, Philosophical Transactions of the Royal Society A.

[4]  Andrei Khrennikov Quantum probabilities and violation of CHSH-inequality from classical random signals and threshold type properly calibrated detectors , 2011 .

[5]  Olga V. Man'ko,et al.  Spin state tomography , 1997 .

[6]  W. D. Muynck Foundations of Quantum Mechanics, an Empiricist Approach , 2002 .

[7]  Andrei Khrennikov,et al.  Hertz’s Viewpoint on Quantum Theory , 2018, Activitas Nervosa Superior.

[8]  G. Leuchs,et al.  Quantum−like nonseparable structures in optical beams , 2015 .

[9]  Adam Paszkiewicz,et al.  On quantum information , 2012, ArXiv.

[10]  Andrei Khrennikov,et al.  Towards Experiments to Test Violation of the Original Bell Inequality , 2018, Entropy.

[11]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[12]  Andrei Khrennikov,et al.  Evaluating the Maximal Violation of the Original Bell Inequality by Two-Qudit States Exhibiting Perfect Correlations/Anticorrelations , 2018, Entropy.

[13]  N. N. Bogoliubov,et al.  Introduction to the theory of quantized fields , 1960 .

[14]  L. E. Ballentine Interpretations of Probability and Quantum Theory , 2001 .

[15]  Andrei Khrennikov,et al.  Bohr against Bell: complementarity versus nonlocality , 2017 .

[16]  Andrei Khrennikov,et al.  ON AN EXPERIMENTAL TEST OF PREQUANTUM THEORY OF CLASSICAL RANDOM FIELDS: AN ESTIMATE FROM ABOVE OF THE COEFFICIENT OF SECOND-ORDER COHERENCE , 2012 .

[17]  Marian Kupczynski,et al.  Can Einstein with Bohr Debate on Quantum Mechanics Be Closed , 2016 .

[18]  Andrei Khrennikov,et al.  Prequantum Classical Statistical Field Theory: Schrödinger Dynamics of Entangled Systems as a Classical Stochastic Process , 2011 .

[19]  A. E. Allahverdyan,et al.  Brownian Entanglement , 2004 .

[21]  N. David Mermin,et al.  Boojums All The Way Through , 1990 .

[22]  Andrei Khrennikov,et al.  Bell Could Become the Copernicus of Probability , 2014, Open Syst. Inf. Dyn..

[23]  Andrei Khrennikov,et al.  Reality Without Realism: On the Ontological and Epistemological Architecture of Quantum Mechanics , 2015 .

[24]  P. Dirac Principles of Quantum Mechanics , 1982 .

[25]  Marian Kupczynski,et al.  Can we close the Bohr–Einstein quantum debate? , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Armin W. Schulz,et al.  Interpretations of probability , 2003 .

[27]  Robert B. Griffiths,et al.  Quantum Nonlocality: Myth and Reality , 2019 .

[28]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[29]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[30]  Robert J. C. Spreeuw Classical wave-optics analogy of quantum information processing , 2001 .

[31]  Margarita A. Man'ko,et al.  New Entropic Inequalities and Hidden Correlations in Quantum Suprematism Picture of Qudit States † , 2018, Entropy.

[32]  Rudolf Haag,et al.  Local quantum physics : fields, particles, algebras , 1993 .

[33]  Alain Aspect,et al.  Speakable and Unspeakable in Quantum Mechanics by J. S. Bell , 2004 .

[34]  Andrei Khrennikov,et al.  The Principle of Supplementarity: A Contextual Probabilistic Viewpoint to Complementarity, the Interference of Probabilities and Incompatibility of Variables in Quantum Mechanics , 2005 .

[35]  G. Jaeger,et al.  Quantum Information: An Overview , 2006 .

[36]  R. Haag,et al.  Local quantum physics , 1992 .

[37]  Arkady Plotnitsky,et al.  Epistemology and Probability: Bohr, Heisenberg, Schrödinger, and the Nature of Quantum-Theoretical Thinking , 2009 .

[38]  J. Bell,et al.  Speakable and Unspeakable in Quantum Mechanics: Preface to the first edition , 2004 .

[39]  Richard Phillips Feynman,et al.  The Concept of Probability in Quantum Mechanics , 1951 .

[40]  Luigi Accardi,et al.  The Probabilistic Roots of the Quantum Mechanical Paradoxes , 1984 .

[41]  B. M. Fulk MATH , 1992 .

[42]  S. Boughn,et al.  Making Sense of Bell’s Theorem and Quantum Nonlocality , 2017, 1703.11003.

[43]  Antony Valentini,et al.  Beyond the Quantum , 2009, 1001.2758.

[44]  Gregg Jaeger,et al.  Quantum Objects: Non-Local Correlation, Causality and Objective Indefiniteness in the Quantum World , 2013 .

[45]  Andrei Khrennikov,et al.  Classical (Local and Contextual) Probability Model for Bohm–Bell Type Experiments: No-Signaling as Independence of Random Variables , 2019, Entropy.

[46]  Mark Beck,et al.  Observing the quantum behavior of light in an undergraduate laboratory , 2004 .

[47]  V. I. Man'ko,et al.  Symplectic tomography as classical approach to quantum systems , 1996 .

[48]  G Leuchs,et al.  Quantum correlations in separable multi-mode states and in classically entangled light , 2019, Reports on progress in physics. Physical Society.

[49]  Anirban Mukherjee,et al.  Entanglement in Classical Optics , 2013, 1308.6154.

[50]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[51]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[52]  Arkady Plotnitsky Niels Bohr and Complementarity , 2012 .

[53]  Marian Kupczynski,et al.  Closing the Door on Quantum Nonlocality , 2018, Entropy.

[54]  Andrei Khrennikov,et al.  Bohm-Bell type experiments: Classical probability approach to (no-)signaling and applications to quantum physics and psychology , 2018, 1812.10826.

[55]  There Is No Action at a Distance in Quantum Mechanics, Spooky or Otherwise , 2018, 1806.07925.

[56]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[57]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[58]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[59]  Harald Atmanspacher,et al.  Epistemic and Ontic Quantum Realities , 2003 .

[60]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[61]  Andrei Khrennikov,et al.  Get Rid of Nonlocality from Quantum Physics , 2019, Entropy.

[62]  R. Spreeuw A Classical Analogy of Entanglement , 1998 .