On first-fit coloring of ladder-free posets

Bosek and Krawczyk exhibited an on-line algorithm for partitioning an on-line poset of width w into w^1^4^l^g^w chains. They also observed that the problem of on-line chain partitioning of general posets of width w could be reduced to First-Fit chain partitioning of 2w^2+1-ladder-free posets of width w, where an m-ladder is the transitive closure of the union of two incomparable chains x"[email protected][email protected]?x"m, y"[email protected][email protected]?y"m and the set of comparabilities {x"[email protected]?y"1,...,x"[email protected]?y"m}. Here, we provide a subexponential upper bound (in terms of w with m fixed) for the performance of First-Fit chain partitioning on m-ladder-free posets, as well as an exact quadratic bound when m=2, and an upper bound linear in m when w=2. Using the Bosek-Krawczyk observation, this yields an on-line chain partitioning algorithm with a somewhat improved performance bound. More importantly, the algorithm and the proof of its performance bound are much simpler.

[1]  Bartlomiej Bosek,et al.  First-Fit Algorithm for the On-Line Chain Partitioning Problem , 2010, SIAM J. Discret. Math..

[2]  Hal A. Kierstead,et al.  First-Fit coloring of bounded tolerance graphs , 2011, Discret. Appl. Math..

[3]  Stefan Felsner,et al.  On-Line Chain Partitions of Orders: A Survey , 2012, Order.

[4]  Hal A. Kierstead,et al.  A polynomial time approximation algorithm for dynamic storage allocation , 1991, Discret. Math..

[5]  R. P. Dilworth,et al.  A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS , 1950 .

[6]  Jun Qin,et al.  Coloring interval graphs with first-fit , 1995, Discret. Math..

[7]  David A. Smith,et al.  The First-Fit Algorithm Uses Many Colors on Some Interval Graphs , 2010 .

[8]  P. Fishburn Intransitive indifference with unequal indifference intervals , 1970 .

[9]  Bartlomiej Bosek,et al.  Forbidden structures for efficient First-Fit chain partitioning (extended abstract) , 2011, Electron. Notes Discret. Math..

[10]  Endre Szemerédi,et al.  Induced subtrees in graphs of large chromatic number , 1980, Discret. Math..

[11]  N. S. Narayanaswamy,et al.  A Note on First-Fit Coloring of Interval Graphs , 2008, Order.

[12]  H. A. Kierstead,et al.  The Linearity of First-Fit Coloring of Interval Graphs , 1988, SIAM J. Discret. Math..

[13]  Henry A. Kierstead,et al.  An effective version of Dilworth’s theorem , 1981 .

[14]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[15]  Rajiv Raman,et al.  Buffer minimization using max-coloring , 2004, SODA '04.

[16]  Gwenaël Joret,et al.  First-Fit is Linear on Posets Excluding Two Long Incomparable Chains , 2011, Order.

[17]  Hal A. Kierstead,et al.  On-Line Coloring and Recursive Graph Theory , 1994, SIAM J. Discret. Math..

[18]  David R. Wood,et al.  An Improved Bound for First-Fit on Posets Without Two Long Incomparable Chains , 2011, SIAM J. Discret. Math..

[19]  Bartlomiej Bosek,et al.  The Sub-exponential Upper Bound for On-Line Chain Partitioning , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[20]  Patrick Baier,et al.  On-line Chain Partitioning of Up-growing Interval Orders , 2007, Order.

[21]  Stefan Felsner,et al.  On-line chain partitioning of up-growing orders: The case of 2-dimensional orders and semi-orders , 2007, ArXiv.

[22]  Hal A. Kierstead,et al.  Radius two trees specify χ-bounded classes , 1994, J. Graph Theory.

[23]  P. Erdos,et al.  On chromatic number of graphs and set-systems , 1966 .

[24]  Stefan Felsner On-Line Chain Partitions of Orders , 1997, Theor. Comput. Sci..