Effect of particle size and surface structure on adsorption of O and OH on platinum nanoparticles: A first-principles study

Using first-principles density functional theory, we study the effect of particle size and surface structure on the chemisorption energy of OH and O on nanoparticles of Pt. We find that the chemisorption energies of O and OH are strongly affected by the size and structure of the Pt particle varying by up to $1.0\phantom{\rule{0.3em}{0ex}}\mathrm{eV}$ at different adsorption sites and particle sizes.

[1]  L. Pino,et al.  Analysis of platinum particle size and oxygen reduction in phosphoric acid , 1991 .

[2]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[3]  G. Fisher,et al.  Oxygen interactions with the Pt(111) surface , 1980 .

[4]  D. Hamann,et al.  Electronic Structure of a "Poisoned" Transition-Metal Surface , 1984 .

[5]  Ye Xu,et al.  Thermodynamic equilibrium compositions, structures, and reaction energies of Pt(x)O(y) (x = 1-3) clusters predicted from first principles. , 2006, The journal of physical chemistry. B.

[6]  T. Tsong,et al.  Magic numbers of atoms in surface-supported planar clusters. , 2006, Physical review letters.

[7]  M. Eikerling,et al.  Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: the role of surface mobility. , 2004, Faraday discussions.

[8]  A. Anderson,et al.  Cobalt concentration effect in Pt1−xCox on the reversible potential for forming OHads from H2Oads in acid solution , 2005 .

[9]  Núria López,et al.  On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation , 2004 .

[10]  Jens K Nørskov,et al.  Catalytic CO oxidation by a gold nanoparticle: a density functional study. , 2002, Journal of the American Chemical Society.

[11]  P. Ross,et al.  The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. , 2005, Journal of the American Chemical Society.

[12]  A. Sánchez,et al.  Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: Each atom counts , 1999 .

[13]  Mostafa A. El-Sayed,et al.  Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution , 2004 .

[14]  Manos Mavrikakis,et al.  Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys. , 2004, Journal of the American Chemical Society.

[15]  J K Norsko,et al.  Chemisorption on metal surfaces , 1990 .

[16]  G. Ceder,et al.  Effect of coadsorption and Ru alloying on the adsorption of CO on Pt , 2006 .

[17]  Cohen,et al.  Orbital symmetry, reactivity, and transition metal surface chemistry. , 1994, Physical review letters.

[18]  Jens K. Nørskov,et al.  Electronic factors determining the reactivity of metal surfaces , 1995 .

[19]  B. Hammer BOND ACTIVATION AT MONATOMIC STEPS : NO DISSOCIATION AT CORRUGATED RU(0001) , 1999 .

[20]  J. Nørskov,et al.  Ammonia Synthesis from First-Principles Calculations , 2005, Science.

[21]  J. Goodwin,et al.  Investigation of the initial rapid deactivation of platinum catalysts during the selective oxidation of carbon monoxide , 2004 .

[22]  Murray S. Daw,et al.  The embedded-atom method: a review of theory and applications , 1993 .

[23]  Harris,et al.  H2 dissociation at metal surfaces. , 1985, Physical review letters.

[24]  A. Anderson,et al.  Mechanism for the electrooxidation of carbon monoxide on platinum by H2O. Density functional theory calculation , 2003 .

[25]  K. Han,et al.  Metal Particle Size Effects and Metal-Support Interaction in Electrochemically Treated Pt/C Catalysts Investigated by #2#1 NMR , 2005 .

[26]  M. El-Sayed,et al.  Effect of Catalytic Activity on the Metallic Nanoparticle Size Distribution: Electron-Transfer Reaction between Fe(CN)6 and Thiosulfate Ions Catalyzed by PVP−Platinum Nanoparticles , 2003 .

[27]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[28]  Jens K. Nørskov,et al.  Theoretical surface science and catalysis—calculations and concepts , 2000 .

[29]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[30]  M. Hove,et al.  A low-energy electron diffraction study of oxygen, water and ice adsorption on Pt(111) , 1993 .

[31]  Ali Alavi,et al.  Catalytic role of gold in gold-based catalysts: a density functional theory study on the CO oxidation on gold. , 2002, Journal of the American Chemical Society.

[32]  Claude R. Henry,et al.  Surface studies of supported model catalysts , 1998 .

[33]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[34]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[35]  S. Mukerjee,et al.  Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: an in situ XAS investigation , 1998 .

[36]  K. Kinoshita,et al.  Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes , 1990 .

[37]  K. Friedrich,et al.  Novel method for the investigation of single nanoparticle reactivity. , 2002, Faraday discussions.

[38]  Yasushi Murakami,et al.  Size effects of platinum particles on the electroreduction of oxygen , 1996 .

[39]  Zhong Lin Wang,et al.  Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity , 2007, Science.

[40]  Ye Xu,et al.  Effect of particle size on the oxidizability of platinum clusters. , 2006, The journal of physical chemistry. A.

[41]  Y. Zhu,et al.  Bonding mechanism and atomic geometry of an ordered hydroxyl overlayer on Pt(111). , 2001, Journal of the American Chemical Society.

[42]  E. Oldfield,et al.  Particle-size effect of nanoscale platinum catalysts in oxygen reduction reaction: an electrochemical and 195Pt EC-NMR study. , 2006, Physical chemistry chemical physics : PCCP.

[43]  B. Lundqvist,et al.  First-principles diffusion-barrier calculation for atomic oxygen on Pt(111) , 1998 .

[44]  Manos Mavrikakis,et al.  A search engine for catalysts , 2006, Nature materials.

[45]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[46]  Angelos Michaelides,et al.  A density functional theory study of hydroxyl and the intermediate in the water formation reaction on Pt , 2001 .

[47]  A. Rappe,et al.  Effect of Particle Size on the Adsorption of O and S Atoms on Pt: A Density-Functional Theory Study , 2001 .

[48]  J. Gardea-Torresdey,et al.  Structure shape and stability of nanometric sized particles , 2001 .

[49]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[50]  P N Ross,et al.  The impact of geometric and surface electronic properties of pt-catalysts on the particle size effect in electrocatalysis. , 2005, The journal of physical chemistry. B.

[51]  N. Marzari,et al.  Vibrational recognition of adsorption sites for CO on platinum and platinum-ruthenium surfaces. , 2007, Journal of the American Chemical Society.

[52]  R. Hoffmann,et al.  Molecular orbital studies of dissociative chemisorption of first period diatomic molecules and ethylene on (100) W and Ni surfaces , 1974 .