Quantifying the effect of baryon physics on weak lensing tomography

We use matter power spectra from cosmological hydrodynamic simulations to quantify the effect of baryon physics on the weak gravitational lensing shear signal. The simulations consider a number of processes, such as radiative cooling, star formation, supernovae and feedback from active galactic nuclei (AGN). Van Daalen et al. (2011) used the same simulations to show that baryon physics, in particular the strong feedba ck that is required to solve the overcooling problem, modifies the matter power spectrum on s cales relevant for cosmological weak lensing studies. As a result, the use of power spectra fr om dark matter simulations can lead to significant biases in the inferred cosmological para meters. We show that the typical biases are much larger than the precision with which future missions aim to constrain the dark energy equation of state, w0. For instance, the simulation with AGN feedback, which reproduces X-ray and optical properties of groups of galaxies, gi ves rise to a � 40% bias in w0. We also explore the effect of baryon physics on constraints on m, σ8, the running of the spectral index, the mass of the neutrinos and models of warm dark matter. We demonstrate that the modification of the power spectrum is dominated by groups and clusters of galaxies, the effect of which can be modelled. We consider an approach based on the popular halo model and show that simple modifications can capture the main features of baryonic feedback. Despite its simplicity, we find that our model, when calibrated on the simulations, is able to reduce the bias in w0 to a level comparable to the size of the statistical uncertai nties for a Euclid-like mission. While observations of the gas and stellar fraction s as a function of halo mass can be used to calibrate the model, hydrodynamic simulations will likely still be needed to extend the observed scaling relations down to halo masses of 10 12 h −1 M⊙.

[1]  Ivan R. King,et al.  Density Data and Emission Measure for a Model of the Coma Cluster , 1972 .

[2]  C. Jones,et al.  The structure of clusters of galaxies observed with Einstein , 1984 .

[3]  S. White,et al.  Simulations of X-ray clusters , 1994, astro-ph/9408069.

[4]  Turner,et al.  CBR anisotropy and the running of the scalar spectral index. , 1995, Physical review. D, Particles and fields.

[5]  N. Kaiser Weak Lensing and Cosmology , 1996, astro-ph/9610120.

[6]  S. J. Dodds,et al.  Non-linear evolution of cosmological power spectra , 1996 .

[7]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[8]  B. Jones,et al.  The universality of the stellar initial mass function , 1997 .

[9]  Peter Schneider,et al.  A NEW MEASURE FOR COSMIC SHEAR , 1998 .

[10]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[11]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[12]  Wayne Hu,et al.  � 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. POWER SPECTRUM TOMOGRAPHY WITH WEAK LENSING , 1999 .

[13]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[14]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999 .

[15]  J. Peacock,et al.  Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.

[16]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[17]  X-RAY PROPERTIES OF GROUPS OF GALAXIES , 2000, astro-ph/0009379.

[18]  The redshift‐space power spectrum in the halo model , 2000, astro-ph/0005085.

[19]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[20]  Revisiting the cosmic cooling crisis , 2001, astro-ph/0104041.

[21]  F. V. D. Bosch,et al.  Constraining galaxy formation and cosmology with the conditional luminosity function of galaxies , 2002, astro-ph/0207019.

[22]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[23]  Masahiro Takada,et al.  Cosmological parameters from lensing power spectrum and bispectrum tomography , 2003, astro-ph/0310125.

[24]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[25]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[26]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[27]  T. Ponman,et al.  The GEMS project: X-ray analysis and statistical properties of the group sample , 2004, astro-ph/0402439.

[28]  Galaxy-galaxy lensing : dissipationless simulations versus the halo model , 2004, astro-ph/0410711.

[29]  Matthias Bartelmann,et al.  Weak gravitational lensing , 2005 .

[30]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[31]  Dipak Munshi,et al.  Cosmology with weak lensing surveys. , 2005, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences.

[32]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[33]  Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-{alpha} forest , 2005, astro-ph/0501562.

[34]  J. Silk,et al.  Non-linear evolution of suppressed dark matter primordial power spectra , 2005 .

[35]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[36]  WFCAM, Spitzer/IRAC and SCUBA observations of the massive star-forming region DR21/W75 - I. The collimated molecular jets , 2006, astro-ph/0610186.

[37]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[38]  Wendy L. Freedman,et al.  Report of the Dark Energy Task Force , 2006, astro-ph/0609591.

[39]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[40]  AGN Outflows and the Matter Power Spectrum , 2006, astro-ph/0604308.

[41]  Douglas H. Rudd,et al.  The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 08/29/06 EFFECTS OF BARYONS AND DISSIPATION ON THE MATTER POWER SPECTRUM , 2007 .

[42]  Y. Mellier,et al.  First Cosmic Shear Results from the Canada-France-Hawaii Telescope Wide Synoptic Legacy Survey , 2006 .

[43]  V. Springel,et al.  The Influence of Baryons on the Clustering of Matter and Weak-Lensing Surveys , 2005, astro-ph/0512426.

[44]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[45]  H. Trac,et al.  Can sterile neutrinos be the dark matter? , 2006, Physical review letters.

[46]  H. Hoekstra,et al.  Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime , 2007, 0712.0884.

[47]  R. Ellis,et al.  The Shear TEsting Programme 2: Factors affecting high precision weak lensing analyses , 2006, astro-ph/0608643.

[48]  IoA,et al.  Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters , 2007, 0706.0033.

[49]  Yannick Mellier,et al.  Cosmological constraints from the 100-deg2 weak-lensing survey , 2007 .

[50]  J. Uzan The acceleration of the universe and the physics behind it , 2006, astro-ph/0605313.

[51]  S. More,et al.  Towards a concordant model of halo occupation statistics , 2006, astro-ph/0610686.

[52]  Y. Mellier,et al.  Cosmic variance of weak lensing surveys in the non‐Gaussian regime , 2006, astro-ph/0606648.

[53]  R. Abuter,et al.  Evidence for a Long-standing Top-heavy Initial Mass Function in the Central Parsec of the Galaxy , 2007, 0707.2382.

[54]  Missing thermal energy of the intracluster medium , 2006, astro-ph/0612700.

[55]  J. Schaye,et al.  On the relation between the Schmidt and Kennicutt-Schmidt star formation laws and its implications for numerical simulations , 2007, 0709.0292.

[56]  M. Viel,et al.  How cold is cold dark matter? Small-scales constraints from the flux power spectrum of the high-redshift lyman-alpha forest. , 2007, Physical review letters.

[57]  S. More,et al.  Galaxy clustering and galaxy-galaxy lensing: a promising union to constrain cosmological parameters , 2008, 0807.4932.

[58]  H. Hoekstra,et al.  Weak Gravitational Lensing and Its Cosmological Applications , 2008, 0805.0139.

[59]  A. Zentner,et al.  Self-calibration of tomographic weak lensing for the physics of baryons to constrain dark energy , 2007, 0709.4029.

[60]  M. Takada,et al.  The impact of non‐Gaussian errors on weak lensing surveys , 2008, 0810.4170.

[61]  T. Ohashi,et al.  Suzaku measurement of Abell 2204's intracluster gas temperature profile out to 1800 kpc , 2008, 0806.2920.

[62]  E. Rykoff,et al.  The LX—M relation of clusters of galaxies , 2008, 0802.1069.

[63]  S. Kay,et al.  Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.

[64]  D. Higdon,et al.  THE COYOTE UNIVERSE. I. PRECISION DETERMINATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2008, 0812.1052.

[65]  S. Hannestad,et al.  The effect of thermal neutrino motion on the non-linear cosmological matter power spectrum , 2008, 0802.3700.

[66]  P. Kroupa,et al.  A top-heavy stellar initial mass function in starbursts as an explanation for the high mass-to-light ratios of ultra-compact dwarf galaxies , 2009, 0901.0915.

[67]  J. Lesgourgues,et al.  Lyman-alpha constraints on warm and on warm-plus-cold dark matter models , 2008, 0812.0010.

[68]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[69]  Xinyu Dai,et al.  ON THE BARYON FRACTIONS IN CLUSTERS AND GROUPS OF GALAXIES , 2009, 0911.2230.

[70]  J. Schaye,et al.  Chemical enrichment in cosmological, smoothed particle hydrodynamics simulations , 2009, 0902.1535.

[71]  Institute for Astronomy,et al.  STELLAR AND TOTAL BARYON MASS FRACTIONS IN GROUPS AND CLUSTERS SINCE REDSHIFT 1 , 2009, 0904.0448.

[72]  CHANDRA STUDIES OF THE X-RAY GAS PROPERTIES OF GALAXY GROUPS , 2009 .

[73]  Gary M. Bernstein,et al.  COMPREHENSIVE TWO-POINT ANALYSES OF WEAK GRAVITATIONAL LENSING SURVEYS , 2008, 0808.3400.

[74]  R. Teyssier,et al.  The effect of baryons on the variance and the skewness of the mass distribution in the Universe at small scales , 2009, 0905.2615.

[75]  J. Schaye,et al.  The effect of photoionization on the cooling rates of enriched, astrophysical plasmas , 2008, 0807.3748.

[76]  J. Schaye,et al.  Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests , 2009, 0904.2572.

[77]  Yannick Mellier,et al.  Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS , 2009, 0911.0053.

[78]  T. Paumard,et al.  AN EXTREMELY TOP-HEAVY INITIAL MASS FUNCTION IN THE GALACTIC CENTER STELLAR DISKS , 2009, 0908.2177.

[79]  P. Kroupa,et al.  Top-heavy integrated galactic stellar initial mass functions in starbursts , 2010, 1011.3814.

[80]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[81]  G. Stinson,et al.  High-accuracy power spectra including baryonic physics in dynamical Dark Energy models , 2010, 1005.4683.

[82]  S. Kay,et al.  Impact of baryon physics on dark matter structures: a detailed simulation study of halo density profiles , 2010, 1001.3447.

[83]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[84]  Tucson,et al.  BIG FISH, LITTLE FISH: TWO NEW ULTRA-FAINT SATELLITES OF THE MILKY WAY , 2010, 1002.0504.

[85]  J. Schaye,et al.  The physics driving the cosmic star formation history , 2009, 0909.5196.

[86]  Y. Mellier,et al.  A WEAK LENSING STUDY OF X-RAY GROUPS IN THE COSMOS SURVEY: FORM AND EVOLUTION OF THE MASS–LUMINOSITY RELATION , 2009, 0910.5219.

[87]  J. Bullock,et al.  THE CASE AGAINST WARM OR SELF-INTERACTING DARK MATTER AS EXPLANATIONS FOR CORES IN LOW SURFACE BRIGHTNESS GALAXIES , 2009, 0912.3518.

[88]  P. Schneider,et al.  A fitting formula for the non-Gaussian contribution to the lensing power spectrum covariance , 2009, 0907.1524.

[89]  R. Smith,et al.  Cosmological perturbation theory for baryons and dark matter: One-loop corrections in the renormalized perturbation theory framework , 2009, 0910.5220.

[90]  M. S. Burns,et al.  SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION , 2010, 1004.1711.

[91]  J. Weller,et al.  Constraining warm dark matter with cosmic shear power spectra , 2010, 1009.0218.

[92]  V. Springel,et al.  Gas expulsion by quasar-driven winds as a solution to the overcooling problem in galaxy groups and clusters , 2010, 1008.4799.

[93]  S. Allen,et al.  Baryons at the Edge of the X-ray–Brightest Galaxy Cluster , 2011, Science.

[94]  F. Villaescusa-Navarro,et al.  Cores and cusps in warm dark matter halos , 2010, 1010.3008.

[95]  Robert C. Kennicutt,et al.  DARK AND LUMINOUS MATTER IN THINGS DWARF GALAXIES , 2010, 1011.0899.

[96]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.