Collapse and reappearance of magnetic orderings in spin frustrated TbMnO3 induced by Fe substitution

We studied the temperature dependent magnetic phase evolution in spin frustrated TbMnO3 affected by Fe doping via powder neutron diffraction. With the introduction of Fe (10% and 20%), the long range incommensurate magnetic orderings collapse. When the Fe content is increased to 30%, a long-range antiferromagnetic ordering develops, while a spin reorientation transition is found near 35 K from a canted G-type antiferromagnetic ordering to a collinear G-type antiferromagnetic ordering. This work demonstrates the complex magnetic interactions existing in transition metal oxides, which helps to understand the frustrated spin states in other similar systems and design magnetic materials as well.

[1]  P. Lightfoot,et al.  Systems chemistry: All in a spin. , 2016, Nature chemistry.

[2]  T. Sakakibara,et al.  Possible observation of highly itinerant quantum magnetic monopoles in the frustrated pyrochlore Yb2Ti2O7 , 2016, Nature Communications.

[3]  François-Xavier Coudert,et al.  Encoding complexity within supramolecular analogues of frustrated magnets. , 2016, Nature chemistry.

[4]  Huixia Luo,et al.  Cr-Doped TiSe2 - A Layered Dichalcogenide Spin Glass , 2015 .

[5]  M. Fiebig,et al.  Magnetoelectric domain control in multiferroic TbMnO3 , 2015, Science.

[6]  A. Dixit,et al.  Effect of transition metal doping on multiferroic ordering in FeV O 4 , 2015 .

[7]  J. Tapp,et al.  Experimental Realization of a Unique Class of Compounds: XY‐Antiferromagnetic Triangular Lattices, KAg2Fe[VO4]2 and RbAg2Fe[VO4]2, with Ferroelectric Ground States. , 2014 .

[8]  K. Shimizu,et al.  Giant spin-driven ferroelectric polarization in TbMnO3 under high pressure , 2014, Nature Communications.

[9]  M. Hayward,et al.  Structure and magnetism of Sr3Co2O4Cl2--an electronically driven lattice distortion in an oxychloride containing square planar Co(II) centers. , 2012, Journal of the American Chemical Society.

[10]  J. Scott,et al.  Structurally tailored hexagonal ferroelectricity and multiferroism in epitaxial YbFeO3 thin-film heterostructures. , 2012, Journal of the American Chemical Society.

[11]  M. Josse,et al.  Increasing the Phase-Transition Temperatures in Spin-Frustrated Multiferroic MnWO4 by Mo Doping , 2012 .

[12]  Zhenxiang Cheng,et al.  Continuously tunable magnetic phase transitions in the DyMn1-xFexO3 system , 2011 .

[13]  H. Jeng,et al.  Effect of Jahn-Teller distortion on magnetic ordering in Dy(Fe,Mn)O 3 perovskites , 2011 .

[14]  I. Fina,et al.  Magnetic switch of polarization in epitaxial orthorhombic YMnO3 thin films , 2010 .

[15]  T. Wei,et al.  Preparation of epitaxial DyFeO3 thin films and magnetodielectric coupling , 2010 .

[16]  R. Ramesh,et al.  Magnetoelectric Coupling Effects in Multiferroic Complex Oxide Composite Structures , 2010, Advanced materials.

[17]  J. Wan,et al.  Effect of B-site Al-doping on electric polarization in DyMnO3 , 2010 .

[18]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[19]  N. D. Mathur,et al.  Ferroelectric Control of Spin Polarization , 2010, Science.

[20]  V. B. Naik,et al.  Electrical, magnetic, magnetodielectric, and magnetoabsorption studies in multiferroic GaFeO3 , 2009, 0909.4609.

[21]  R. Cava,et al.  Scaling behaviour of magnetic transitions in Ni3V2O8 , 2009 .

[22]  James F. Scott,et al.  Physics and Applications of Bismuth Ferrite , 2009 .

[23]  Y. Song,et al.  Stabilization of the elliptical spiral phase and the spin-flop transition in multiferroic Mn 1-x Co x WO 4 , 2009 .

[24]  J. Attfield,et al.  Frustrated Orders in the Perovskite (Bi0.5Sr0.5)CrO3 , 2009 .

[25]  H. M. Jang,et al.  Magnetoelectric coupling susceptibility from magnetodielectric effect , 2008 .

[26]  R. Moessner,et al.  Magnetic monopoles in spin ice , 2007, Nature.

[27]  R. Muralidharan,et al.  aMagnetic control of spin reorientation and magnetodielectric effect below the spin compensation temperature in TmFeO3 , 2007 .

[28]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[29]  Maxim Mostovoy,et al.  Ferroelectricity in spiral magnets. , 2005, Physical review letters.

[30]  A. P. Ramirez,et al.  Magnetoelectric phase diagrams of orthorhombic R MnO 3 ( R = Gd , Tb, and Dy) , 2005 .

[31]  C. L. Zhang,et al.  Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3. , 2005, Physical review letters.

[32]  M. Fiebig,et al.  Magnetic phase control by an electric field , 2004, Nature.

[33]  Y. Tokura,et al.  Distorted perovskite witheg1configuration as a frustrated spin system , 2002, cond-mat/0211568.

[34]  M. Gingras,et al.  Spin Ice State in Frustrated Magnetic Pyrochlore Materials , 2001, Science.

[35]  N. Nagaosa,et al.  Spin Chirality, Berry Phase, and Anomalous Hall Effect in a Frustrated Ferromagnet , 2001, Science.

[36]  R. Siddharthan,et al.  Zero-point entropy in ‘spin ice’ , 1999, Nature.

[37]  I. Swainson,et al.  Cooperative Paramagnetism in the Geometrically Frustrated Pyrochlore Antiferromagnet Tb 2 Ti 2 O 7 , 1999 .

[38]  S. Bramwell,et al.  GEOMETRICAL FRUSTRATION IN THE FERROMAGNETIC PYROCHLORE HO2TI2O7 , 1997 .

[39]  M. Gingras,et al.  Static Critical Behavior of the Spin-Freezing Transition in the Geometrically Frustrated Pyrochlore Antiferromagnet Y 2 Mo 2 O 7 , 1996, cond-mat/9611121.

[40]  S. Barilo,et al.  A Mossbauer study of temperature-driven spin-reorientation transitions in TbFeO3 , 1994 .

[41]  B. Wanklyn,et al.  Spin reorientation transitions in DyFeO3 induced by magnetic fields , 1980 .

[42]  G. Lawes Control of the multiferroic transition in Ni_{3}V_{2}O_{8} by transition metal doping , 2014 .