A sequential estimation approach to terrestrial reference frame determination
暂无分享,去创建一个
T. M. Chin | Michael B. Heflin | Claudio Abbondanza | Benedikt Soja | Jay Parker | Richard S. Gross | Toshio M. Chin | X. Wu | M. Heflin | R. Gross | J. Parker | C. Abbondanza | Benedikt Soja | X. Wu | J. Parker
[1] Chung-Yen Kuo,et al. Geodetic Observations and Global Reference Frame Contributions to Understanding Sea‐Level Rise and Variability , 2010 .
[2] Horst Müller,et al. Evaluation of DTRF2014, ITRF2014, and JTRF2014 by Precise Orbit Determination of SLR Satellites , 2018, IEEE Transactions on Geoscience and Remote Sensing.
[3] Pascal Willis,et al. The International DORIS Service contribution to the 2014 realization of the International Terrestrial Reference Frame , 2016 .
[4] Z. Altamimi,et al. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions , 2016 .
[5] M. Heflin,et al. Stacking global GPS verticals and horizontals to solve for the fortnightly and monthly body tides: Implications for mantle anelasticity , 2015 .
[6] Manuela Seitz,et al. The 2008 DGFI realization of the ITRS: DTRF2008 , 2012, Journal of Geodesy.
[7] Robert W. King,et al. Estimating regional deformation from a combination of space and terrestrial geodetic data , 1998 .
[8] J. Zumberge,et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .
[9] Nikita P. Zelensky,et al. Impact of ITRS 2014 realizations on altimeter satellite precise orbit determination , 2018 .
[10] M. Tamisiea,et al. On seasonal signals in geodetic time series , 2012 .
[11] Z. Altamimi,et al. ITRF2008: an improved solution of the international terrestrial reference frame , 2011 .
[12] Claude Boucher,et al. A review of algebraic constraints in terrestrial reference frame datum definition , 2001 .
[13] Manuela Seitz,et al. Consistent realization of Celestial and Terrestrial Reference Frames , 2018, Journal of Geodesy.
[14] M. Pearlman,et al. Laser geodetic satellites: a high-accuracy scientific tool , 2019, Journal of Geodesy.
[15] Z. Altamimi,et al. Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993–2014 , 2016, Journal of Geodesy.
[16] Thorne Lay,et al. A review of the rupture characteristics of the 2011 Tohoku-oki Mw 9.1 earthquake , 2017 .
[17] G. Blewitt,et al. Harnessing the GPS Data Explosion for Interdisciplinary Science , 2018, Eos.
[18] Zuheir Altamimi,et al. ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications , 2002 .
[19] Z. Altamimi,et al. ITRF2005 : A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters , 2007 .
[20] D. Kuang,et al. DORIS Satellite Phase Center Determination and Consequences on the Derived Scale of the Terrestrial Reference Frame , 2007 .
[21] Yuji Yagi,et al. A unified source model for the 2011 Tohoku earthquake , 2011 .
[22] Stephen M. Lichten,et al. Strategies for high-precision Global Positioning System orbit determination , 1987 .
[23] Y. Bock,et al. Anatomy of apparent seasonal variations from GPS‐derived site position time series , 2001 .
[24] R. E. Kalman,et al. A New Approach to Linear Filtering and Prediction Problems , 2002 .
[25] T. M. Chin,et al. KALREF—A Kalman filter and time series approach to the International Terrestrial Reference Frame realization , 2015 .
[26] Arthur Gelb,et al. Applied Optimal Estimation , 1974 .
[27] P. Malanotte‐Rizzoli,et al. An approximate Kaiman filter for ocean data assimilation: An example with an idealized Gulf Stream model , 1995 .
[28] T. M. Chin,et al. On Kalman filter solution of space-time interpolation , 2001, IEEE Trans. Image Process..
[29] Xavier Collilieux,et al. Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods , 2007 .
[30] R. Kopp,et al. Estimating the sources of global sea level rise with data assimilation techniques , 2012, Proceedings of the National Academy of Sciences.
[31] F. N. Teferle,et al. External Evaluation of the Terrestrial Reference Frame: Report of the Task Force of the IAG Sub-commission 1.2 , 2014 .
[32] Xavier Collilieux,et al. Impact of loading effects on determination of the International Terrestrial Reference Frame , 2010 .
[33] J. Ray,et al. Anomalous harmonics in the spectra of GPS position estimates , 2008 .
[34] M. Zhong,et al. Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes , 2009 .
[35] J. Ray,et al. The IGS contribution to ITRF2014 , 2016, Journal of Geodesy.
[36] Pascal Willis,et al. Terrestrial reference frame requirements within GGOS perspective , 2005 .
[37] Zuheir Altamimi,et al. Review of Reference Frame Representations for a Deformable Earth , 2019, IX Hotine-Marussi Symposium on Mathematical Geodesy.
[38] M. Watkins,et al. The gravity recovery and climate experiment: Mission overview and early results , 2004 .
[39] D. Thaller,et al. IVS contribution to ITRF2014 , 2016, Journal of Geodesy.
[40] Richard S. Gross,et al. A Kalman-filter-based approach to combining independent Earth-orientation series , 1998 .
[41] Zuheir Altamimi,et al. Long-term stability of the terrestrial reference frame , 2004 .
[42] R. König,et al. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06 , 2017 .
[43] Na Wei,et al. Contributions of thermoelastic deformation to seasonal variations in GPS station position , 2017, GPS Solutions.
[44] Athanasios Papoulis,et al. Probability, Random Variables and Stochastic Processes , 1965 .
[45] C. Tourain,et al. Initiating an error budget of the DORIS ground antenna position: Genesis of the Starec antenna type C , 2016 .
[46] Z. Altamimi,et al. The impact of a No‐Net‐Rotation Condition on ITRF2000 , 2003 .
[47] S. Melachroinos,et al. The effect of geocenter motion on Jason-2 orbits and the mean sea level , 2013 .
[48] G. Moreaux,et al. DORIS Starec ground antenna characterization and impact on positioning , 2016 .
[49] Michael B. Heflin,et al. JTRF2014, the JPL Kalman filter and smoother realization of the International Terrestrial Reference System , 2017 .
[50] T. M. Chin,et al. Modeling and forecast of the polar motion excitation functions for short-term polar motion prediction , 2004 .
[51] Xavier Collilieux,et al. Accuracy of the International Terrestrial Reference Frame origin and Earth expansion , 2011 .
[52] J. Ray,et al. Measurements of length of day using the Global Positioning System , 1996 .
[53] Bruce J. Haines,et al. Towards the 1 mm/y Stability of the Radial Orbit Error at Regional Scales , 2014 .
[54] Claudio Abbondanza,et al. Height bias and scale effect induced by antenna gravitational deformations in geodetic VLBI data analysis , 2011 .
[55] D. Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .
[56] James L. Davis,et al. Geodesy by radio interferometry: The application of Kalman Filtering to the analysis of very long baseline interferometry data , 1990 .