A Multi-regional Network Encoding Heading and Steering Maneuvers in Drosophila

An internal sense of heading direction is computed from various cues, including steering maneuvers of the animal. Although neurons encoding heading and steering have been found in multiple brain regions, it is unclear whether and how they are organized into neural circuits. Here we show that, in flying Drosophila, heading and turning behaviors are encoded by population dynamics of specific cell types connecting the subregions of the central complex (CX), a brain structure implicated in navigation. Columnar neurons in the fan-shaped body (FB) of the CX exhibit circular dynamics that multiplex information about turning behavior and heading. These dynamics are coordinated with those in the ellipsoid body, another CX subregion containing a heading representation, although only FB neurons flip turn preference depending on the visual environment. Thus, the navigational system spans multiple subregions of the CX, where specific cell types show coordinated but distinct context-dependent dynamics.

[1]  R. Ritzmann,et al.  Neural activity in the central complex of the cockroach brain is linked to turning behaviors , 2013, Journal of Experimental Biology.

[2]  Marie P Suver,et al.  Octopamine Neurons Mediate Flight-Induced Modulation of Visual Processing in Drosophila , 2012, Current Biology.

[3]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[4]  Michael B. Reiser,et al.  The Emergence of Directional Selectivity in the Visual Motion Pathway of Drosophila , 2017, Neuron.

[5]  Michael H. Dickinson,et al.  A modular display system for insect behavioral neuroscience , 2008, Journal of Neuroscience Methods.

[6]  Volker Hartenstein,et al.  Recurrent Circuitry for Balancing Sleep Need and Sleep , 2018, Neuron.

[7]  Rachel I. Wilson,et al.  Sensorimotor experience remaps visual input to a heading-direction network , 2019, Nature.

[8]  Vivek Jayaraman,et al.  Building a functional connectome of the Drosophila central complex , 2018, eLife.

[9]  S. K. Roberts "Clock" Controlled Activity Rhythms in the Fruit Fly. , 1956, Science.

[10]  J. Armstrong,et al.  Structure of the adult central complex in Drosophila: Organization of distinct neuronal subsets , 2010, The Journal of comparative neurology.

[11]  Michael H. Dickinson,et al.  Sun Navigation Requires Compass Neurons in Drosophila , 2018, Current Biology.

[12]  Michael B. Reiser,et al.  Wide-Field Feedback Neurons Dynamically Tune Early Visual Processing , 2014, Neuron.

[13]  K. Zhang,et al.  Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  Fang Zhang,et al.  Fan-Shaped Body Neurons in the Drosophila Brain Regulate Both Innate and Conditioned Nociceptive Avoidance. , 2018, Cell reports.

[15]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[16]  Qili Liu,et al.  Branch-specific plasticity of a bifunctional dopamine circuit encodes protein hunger , 2017, Science.

[17]  Hokto Kazama,et al.  Decoding of Context-Dependent Olfactory Behavior in Drosophila , 2016, Neuron.

[18]  Johannes D. Seelig,et al.  Angular velocity integration in a fly heading circuit , 2017, eLife.

[19]  Matthew S. Thimgan,et al.  Inducing Sleep by Remote Control Facilitates Memory Consolidation in Drosophila , 2011, Science.

[20]  Chris Q Doe,et al.  Temporal identity establishes columnar neuron morphology, connectivity, and function in a Drosophila navigation circuit , 2018, bioRxiv.

[21]  Chung-Chuan Lo,et al.  Coupled symmetric and asymmetric circuits underlying spatial orientation in fruit flies , 2017, Nature Communications.

[22]  A. Mamiya,et al.  Antennal Mechanosensory Neurons Mediate Wing Motor Reflexes in Flying Drosophila , 2015, The Journal of Neuroscience.

[23]  Michael H. Dickinson,et al.  Idiothetic Path Integration in the Fruit Fly Drosophila melanogaster , 2017, Current Biology.

[24]  Hokto Kazama,et al.  Parallel encoding of recent visual experience and self-motion during navigation in Drosophila , 2017, Nature Neuroscience.

[25]  André A. Fenton,et al.  How the Internally Organized Direction Sense Is Used to Navigate , 2019, Neuron.

[26]  Karl Georg Götz,et al.  Optomotor control of wing beat and body posture in drosophila , 1979, Biological Cybernetics.

[27]  Bruce L. McNaughton,et al.  A Model of the Neural Basis of the Rat's Sense of Direction , 1994, NIPS.

[28]  G. Rubin,et al.  Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits , 2014, The Journal of comparative neurology.

[29]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[30]  V. Jayaraman,et al.  Ring attractor dynamics in the Drosophila central brain , 2017, Science.

[31]  M. Heisenberg,et al.  Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.

[32]  B. Webb,et al.  An Anatomically Constrained Model for Path Integration in the Bee Brain , 2017, Current Biology.

[33]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[34]  Aljoscha Nern,et al.  Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system , 2015, Proceedings of the National Academy of Sciences.

[35]  U. Homberg,et al.  Organization and functional roles of the central complex in the insect brain. , 2014, Annual review of entomology.

[36]  U. Homberg,et al.  Two Compasses in the Central Complex of the Locust Brain , 2019, The Journal of Neuroscience.

[37]  Jamey S. Kain,et al.  Neuronal control of locomotor handedness in Drosophila , 2014, Proceedings of the National Academy of Sciences.

[38]  Anmo J Kim,et al.  Cellular evidence for efference copy in Drosophila visuomotor processing , 2015, Nature Neuroscience.

[39]  N. Strausfeld,et al.  Comparison of octopamine‐like immunoreactivity in the brains of the fruit fly and blow fly , 2006, The Journal of comparative neurology.

[40]  Aljoscha Nern,et al.  Neural signatures of dynamic stimulus selection in Drosophila , 2017, Nature Neuroscience.

[41]  Román A. Corfas,et al.  Diverse Food-Sensing Neurons Trigger Idiothetic Local Search in Drosophila , 2018, Current Biology.

[42]  J. Taube The head direction signal: origins and sensory-motor integration. , 2007, Annual review of neuroscience.

[43]  Johannes D. Seelig,et al.  Feature detection and orientation tuning in the Drosophila central complex , 2013, Nature.

[44]  Kei Ito,et al.  A map of octopaminergic neurons in the Drosophila brain , 2009, The Journal of comparative neurology.

[45]  Ann-Shyn Chiang,et al.  A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. , 2013, Cell reports.

[46]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[47]  G. Rubin,et al.  Refinement of Tools for Targeted Gene Expression in Drosophila , 2010, Genetics.

[48]  Peter T Weir,et al.  Central complex neurons exhibit behaviorally gated responses to visual motion in Drosophila. , 2014, Journal of neurophysiology.

[49]  E. Kravitz,et al.  Single dopaminergic neurons that modulate aggression in Drosophila , 2013, Proceedings of the National Academy of Sciences.

[50]  Alex J. Cope,et al.  A computational model of the integration of landmarks and motion in the insect central complex , 2017, PloS one.

[51]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[52]  Gerald M. Rubin,et al.  Neuroarchitecture of the Drosophila central complex: A catalog of nodulus and asymmetrical body neurons and a revision of the protocerebral bridge catalog , 2018, The Journal of comparative neurology.

[53]  Sung Soo Kim,et al.  Generation of stable heading representations in diverse visual scenes , 2019, Nature.

[54]  H. Mittelstaedt,et al.  Homing by path integration in a mammal , 1980, Naturwissenschaften.

[55]  Jonathan Green,et al.  Building a heading signal from anatomically defined neuron types in the Drosophila central complex , 2018, Current Opinion in Neurobiology.

[56]  Gaby Maimon,et al.  A neural circuit architecture for angular integration in Drosophila , 2017, Nature.

[57]  Michael H. Dickinson,et al.  Motmot, an open-source toolkit for realtime video acquisition and analysis , 2009, Source Code for Biology and Medicine.

[58]  T. Kitamoto,et al.  Fan-shaped body neurons are involved in period-dependent regulation of long-term courtship memory in Drosophila. , 2012, Learning & memory.

[59]  Peter T Weir,et al.  Functional divisions for visual processing in the central brain of flying Drosophila , 2015, Proceedings of the National Academy of Sciences.

[60]  Zhefeng Gong,et al.  Morphological characterization of single fan-shaped body neurons in Drosophila melanogaster , 2009, Cell and Tissue Research.

[61]  Stanley Heinze,et al.  Sun Compass Integration of Skylight Cues in Migratory Monarch Butterflies , 2011, Neuron.

[62]  M. Dickinson,et al.  Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[63]  L. Kahsai,et al.  Chemical neuroanatomy of the Drosophila central complex: Distribution of multiple neuropeptides in relation to neurotransmitters , 2011, The Journal of comparative neurology.

[64]  Michael H Dickinson,et al.  The functional organization of descending sensory-motor pathways in Drosophila , 2017, bioRxiv.

[65]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[66]  Stanley Heinze,et al.  Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect , 2007, Science.

[67]  Benjamin L. de Bivort,et al.  Ring Attractor Dynamics Emerge from a Spiking Model of the Entire Protocerebral Bridge , 2016, bioRxiv.

[68]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[69]  Michael H Dickinson,et al.  Spatial organization of visuomotor reflexes in Drosophila , 2004, Journal of Experimental Biology.

[70]  Vivek Jayaraman,et al.  The insect central complex , 2016, Current Biology.

[71]  R. Ritzmann,et al.  Central-Complex Control of Movement in the Freely Walking Cockroach , 2015, Current Biology.

[72]  T. Collett,et al.  Animal Navigation: Path Integration, Visual Landmarks and Cognitive Maps , 2004, Current Biology.

[73]  Gero Miesenböck,et al.  Neuronal Machinery of Sleep Homeostasis in Drosophila , 2014, Neuron.

[74]  A. Sehgal,et al.  A sleep-inducing gene, nemuri, links sleep and immune function in Drosophila , 2019, Science.