Colour processing in the primate retina: recent progress

Colour vision in the majority of humans is trichromatic, relying on a comparison of the quantal absorption in three different types of cone photoreceptors. The first steps in this comparison process take place at an early level of the visual system, in the retina. This topical review will highlight recent experiments which have advanced our understanding of how cone signals are compared to generate cone‐opponent responses in the primate retina.

[1]  W. Paulus,et al.  A new concept of retinal colour coding , 1983, Vision Research.

[2]  B. B. Lee,et al.  The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. , 1988, The Journal of physiology.

[3]  Barry B. Lee,et al.  From pigments to perception : advances in understanding visual processes , 1991 .

[4]  K. D. De Valois,et al.  A multi-stage color model. , 1993, Vision research.

[5]  B. Boycott,et al.  The cone synapses of cone bipolar cells of primate retina , 1997, Journal of neurocytology.

[6]  B. B. Lee,et al.  Visual resolution of macaque retinal ganglion cells. , 1988, The Journal of physiology.

[7]  R. Dacheux,et al.  Horizontal cells in the retina of the rabbit , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  R. Nelson,et al.  Cat cones have rod input: A comparison of the response properties of cones and horizontal cell bodies in the retina of the cat , 1977, The Journal of comparative neurology.

[9]  D. Baylor,et al.  Spectral sensitivity of primate photoreceptors , 1988, Visual Neuroscience.

[10]  B. B. Lee,et al.  Amplitude and phase of responses of macaque retinal ganglion cells to flickering stimuli. , 1989, The Journal of physiology.

[11]  B. Boycott,et al.  Horizontal Cells in the Monkey Retina: Cone connections and dendritic network , 1989, The European journal of neuroscience.

[12]  A. Cowey,et al.  Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey , 1984, Neuroscience.

[13]  B. Boycott,et al.  Cortical magnification factor and the ganglion cell density of the primate retina , 1989, Nature.

[14]  E. Kaplan,et al.  The receptive field of the primate P retinal ganglion cell, II: Nonlinear dynamics , 1997, Visual Neuroscience.

[15]  Paul R. Martin,et al.  Evidence that Blue‐on Cells are Part of the Third Geniculocortical Pathway in Primates , 1997, The European journal of neuroscience.

[16]  B. B. Lee,et al.  The retinal ganglion cell classes of New World primates. , 1996, Revista brasileira de biologia.

[17]  David J. Calkins,et al.  Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina , 1996, Nature.

[18]  R. Miller,et al.  The role of NMDA and non-NMDA excitatory amino acid receptors in the functional organization of primate retinal ganglion cells , 1994, Visual Neuroscience.

[19]  Paul R. Martin,et al.  Morphological analysis of the blue cone pathway in the retina of a New World monkey, the marmoset Callithrix jacchus , 1997, The Journal of comparative neurology.

[20]  Barry B. Lee,et al.  Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus , 1986, Vision Research.

[21]  A. Goodchild,et al.  Morphology of retinal ganglion cells in a New World monkey, the marmoset Callithrix jacchus , 1996, The Journal of comparative neurology.

[22]  D. Marshak,et al.  Bipolar cells specific for blue cones in the macaque retina , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  Paul R. Martin,et al.  Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina , 1994, Vision Research.

[24]  J. M. Hopkins,et al.  Cone connections of the horizontal cells of the rhesus monkey’s retina , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[25]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[26]  P. Gouras,et al.  Functional properties of ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[27]  A. Goodchild,et al.  Horizontal cell connections with short-wavelength-sensitive cones in macaque monkey retina , 1996, Visual Neuroscience.

[28]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[29]  B. B. Lee,et al.  An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[30]  R. L. Valois,et al.  A multi-stage color model , 1993, Vision Research.

[31]  R. Dacheux,et al.  Physiology of H I horizontal cells in the primate retina , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[32]  S. Schein Anatomy of macaque fovea and spatial densities of neurons in foveal representation , 1988, The Journal of comparative neurology.

[33]  Bb Lee,et al.  Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus) , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  David R. Williams,et al.  The design of chromatically opponent receptive fields , 1991 .

[35]  R. W. Rodieck,et al.  Retinal ganglion cell classes in the Old World monkey: morphology and central projections. , 1981, Science.

[36]  C. Enroth-Cugell,et al.  Spatiotemporal frequency responses of cat retinal ganglion cells , 1987, The Journal of general physiology.

[37]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[38]  Henk Spekreijse,et al.  Spectral behavior of cone-driven horizontal cells in Teleost Retina , 1995, Progress in Retinal and Eye Research.

[39]  B. B. Lee,et al.  Receptive fields of primate retinal ganglion cells studied with a novel technique , 1998, Visual Neuroscience.

[40]  A. Mariani Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive , 1984, Nature.

[41]  J. D. Mollon,et al.  Polymorphism of visual pigments in a callitrichid monkey , 1988, Vision Research.

[42]  Barry B. Lee,et al.  Horizontal Cells of the Primate Retina: Cone Specificity Without Spectral Opponency , 1996, Science.

[43]  S. Mangel,et al.  Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. , 1991, The Journal of physiology.

[44]  S. Bloomfield,et al.  A comparison of receptive field and tracer coupling size of horizontal cells in the rabbit retina , 1995, Visual Neuroscience.

[45]  U. Grünert,et al.  Horizontal cell connections with short wavelength‐sensitive cones in the retina: A comparison between New World and Old World primates , 1998, The Journal of comparative neurology.

[46]  R. L. de Valois,et al.  Analysis and coding of color vision in the primate visual system. , 1965, Cold Spring Harbor symposia on quantitative biology.

[47]  David J. Calkins,et al.  M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses , 1994, Nature.

[48]  R. Shapley,et al.  Cat and monkey retinal ganglion cells and their visual functional roles , 1986, Trends in Neurosciences.

[49]  David J. Calkins,et al.  Microcircuitry and Mosaic of a Blue–Yellow Ganglion Cell in the Primate Retina , 1998, The Journal of Neuroscience.

[50]  R. Marc,et al.  Chromatic organization of primate cones. , 1977, Science.

[51]  J D Mollon,et al.  Photosensitive and photostable pigments in the retinae of Old World monkeys. , 1991, The Journal of experimental biology.

[52]  J. Pokorny,et al.  Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights. , 1992, The Journal of physiology.

[53]  R. L. Valois Analysis and coding of color vision in the primate visual system. , 1965 .

[54]  R. Marrocco,et al.  Predictions about chromatic receptive fields assuming random cone connections. , 1989, Journal of theoretical biology.

[55]  Leon Lagnado,et al.  The retina , 1999, Current Biology.

[56]  R. W. Rodieck,et al.  Identification, classification and anatomical segregation of cells with X‐like and Y‐like properties in the lateral geniculate nucleus of old‐world primates. , 1976, The Journal of physiology.

[57]  D. Dacey Morphology of a small-field bistratified ganglion cell type in the macaque and human retina , 1993, Visual Neuroscience.

[58]  U. Grünert,et al.  Spatial density and immunoreactivity of bipolar cells in the macaque monkey retina , 1992, The Journal of comparative neurology.

[59]  R. W. Rodieck,et al.  Survey of the morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvicellular laminae of the lateral geniculate nucleus , 1993, The Journal of comparative neurology.

[60]  P. Lennie,et al.  Temporal-chromatic interactions in LGN P-cells , 1998, Visual Neuroscience.

[61]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.

[62]  A. Mariani,et al.  A second type of horizontal cell in the monkey retina , 1980, The Journal of comparative neurology.

[63]  Heinz Wässle,et al.  Immunocytochemical analysis of bipolar cells in the macaque monkey retina , 1994, The Journal of comparative neurology.

[64]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[65]  R. L. Valois,et al.  Analysis of response patterns of LGN cells. , 1966, Journal of the Optical Society of America.

[66]  Michael S. Landy,et al.  The Design of Chromatically Opponent Receptive Fields , 1991 .

[67]  B. Boycott,et al.  Morphological Classification of Bipolar Cells of the Primate Retina , 1991, The European journal of neuroscience.

[68]  B. Boycott,et al.  Organization of the Primate Retina: Light Microscopy , 1969 .

[69]  P Lennie,et al.  Distinctive characteristics of subclasses of red–green P-cells in LGN of macaque , 1998, Visual Neuroscience.

[70]  R. W. Rodieck Which Cells Code for Color , 1991 .

[71]  R. G. Smith,et al.  Simulation of an anatomically defined local circuit: The cone-horizontal cell network in cat retina , 1995, Visual Neuroscience.

[72]  R. Shapley,et al.  Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus , 1992, Nature.

[73]  H. Kolb,et al.  Horizontal cells and cone photoreceptors in primate retina: A Golgi‐light microscopic study of spectral connectivity , 1994, The Journal of comparative neurology.

[74]  G. H. Jacobs Primate photopigments and primate color vision. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[75]  P Gouras,et al.  Enchancement of luminance flicker by color-opponent mechanisms. , 1979, Science.

[76]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[77]  H. Kolb,et al.  Midget ganglion cells of the parafovea of the human retina: A Study by electron microscopy and serial section reconstructions , 1991, The Journal of comparative neurology.

[78]  S. Snyder,et al.  Proceedings of the National Academy of Sciences , 1999 .