Learning Modulo Theories for preference elicitation in hybrid domains

This paper introduces CLEO, a novel preference elicitation algorithm capable of recommending complex objects in hybrid domains, characterized by both discrete and continuous attributes and constraints dened

[1]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[2]  Yi Zhang,et al.  Incorporating Diversity and Density in Active Learning for Relevance Feedback , 2007, ECIR.

[3]  Vangelis Th. Paschos,et al.  Applications of combinatorial optimization , 2010 .

[4]  Bernhard Schölkopf,et al.  Use of the Zero-Norm with Linear Models and Kernel Methods , 2003, J. Mach. Learn. Res..

[5]  Thomas Andreas Meyer,et al.  Modeling and Solving Semiring Constraint Satisfaction Problems by Transformation to Weighted Semiring Max-SAT , 2007, Australian Conference on Artificial Intelligence.

[6]  Toby Walsh,et al.  Elicitation strategies for soft constraint problems with missing preferences: Properties, algorithms and experimental studies , 2010, Artif. Intell..

[7]  Filip Radlinski,et al.  Active exploration for learning rankings from clickthrough data , 2007, KDD '07.

[8]  J. March Bounded rationality, ambiguity, and the engineering of choice , 1978 .

[9]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[10]  John Shawe-Taylor,et al.  Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada , 2009, NIPS.

[11]  Bruno Dutertre,et al.  A Fast Linear-Arithmetic Solver for DPLL(T) , 2006, CAV.

[12]  Cesare Tinelli,et al.  Satisfiability Modulo Theories , 2021, Handbook of Satisfiability.

[13]  Alberto Griggio,et al.  Satisfiability Modulo the Theory of Costs: Foundations and Applications , 2010, TACAS.

[14]  Craig Boutilier,et al.  Constraint-based optimization and utility elicitation using the minimax decision criterion , 2006, Artif. Intell..

[15]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[16]  Michael I. Jordan,et al.  Discussion of Boosting Papers , 2003 .

[17]  Francesca Rossi,et al.  Interval-valued soft constraint problems , 2010, Annals of Mathematics and Artificial Intelligence.

[18]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[19]  Craig Boutilier,et al.  Minimax regret based elicitation of generalized additive utilities , 2007, UAI.

[20]  Craig Boutilier,et al.  Simultaneous Elicitation of Preference Features and Utility , 2010, AAAI.

[21]  Scott Sanner,et al.  Real-time Multiattribute Bayesian Preference Elicitation with Pairwise Comparison Queries , 2010, AISTATS.

[22]  Chiranjib Bhattacharyya,et al.  Structured learning for non-smooth ranking losses , 2008, KDD.

[23]  Francesca Rossi,et al.  From soft constraints to bipolar preferences: modelling framework and solving issues , 2010, J. Exp. Theor. Artif. Intell..

[24]  Scott Sanner,et al.  Gaussian Process Preference Elicitation , 2010, NIPS.

[25]  Maya R. Gupta,et al.  How to Analyze Paired Comparison Data , 2011 .

[26]  R. Battiti,et al.  Handling concept drift in preference learning for interactive decision making , 2010 .

[27]  Leonard J. Savage,et al.  The Theory of Statistical Decision , 1951 .

[28]  Eyke Hüllermeier,et al.  Preferences in AI: An overview , 2011, Artif. Intell..

[29]  Bart Selman,et al.  Satisfiability Solvers , 2008, Handbook of Knowledge Representation.

[30]  Li Chen,et al.  User-Involved Preference Elicitation for Product Search and Recommender Systems , 2008, AI Mag..

[31]  Alberto Griggio,et al.  A Modular Approach to MaxSAT Modulo Theories , 2013, SAT.

[32]  Francesca Rossi,et al.  Semiring-based constraint solving and optimization , 1997 .

[33]  Tom Heskes,et al.  Efficiently learning the preferences of people , 2012, Machine Learning.

[34]  Chih-Jen Lin,et al.  A Bayesian Approximation Method for Online Ranking , 2011, J. Mach. Learn. Res..

[35]  Andrea Passerini,et al.  Structured learning modulo theories , 2014, Artif. Intell..

[36]  B. Jones BOUNDED RATIONALITY , 1999 .

[37]  Roberto Battiti,et al.  Active Learning of Combinatorial Features for Interactive Optimization , 2011, LION.

[38]  Albert Oliveras,et al.  On SAT Modulo Theories and Optimization Problems , 2006, SAT.

[39]  Darius Braziunas,et al.  Computational Approaches to Preference Elicitation , 2006 .

[40]  Jennifer G. Dy,et al.  Active Learning from Crowds , 2011, ICML.

[41]  Paolo Viappiani,et al.  Preferences in Interactive Systems: Technical Challenges and Case Studies , 2008, AI Mag..

[42]  Paolo Viappiani,et al.  Monte Carlo Methods for Preference Learning , 2012, LION.