Controlled synthesis of ultrathin metallic MoO2 nanosheets for van der Waals contact

[1]  H. Hsu,et al.  Enhanced Photoresponsivity of 2H-MoTe2 by Inserting 1T-MoTe2 Interlayer Contact for Photodetector Applications , 2021, Crystals.

[2]  Liying Jiao,et al.  Chemical Synthesis and Integration of Highly Conductive PdTe2 with Low‐Dimensional Semiconductors for p‐Type Transistors with Low Contact Barriers , 2021, Advanced materials.

[3]  Jannik C. Meyer,et al.  Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride , 2020, Nature Materials.

[4]  D. Xiong,et al.  Exfoliated graphite nanosheets wrapping on MoO2–SnO2 nanoparticles as a high performance anode material for lithium ion batteries , 2020 .

[5]  X. Duan,et al.  Doping-free complementary WSe2 circuit via van der Waals metal integration , 2020, Nature Communications.

[6]  X. Qiu,et al.  Metallic MoO 2 ‐Modified Graphitic Carbon Nitride Boosting Photocatalytic CO 2 Reduction via Schottky Junction , 2020, Solar RRL.

[7]  A. Pan,et al.  Self-Powered Broad-band Photodetectors Based on Vertically Stacked WSe2/Bi2Te3 p-n Heterojunctions. , 2019, ACS nano.

[8]  Eric Pop,et al.  Contact Engineering High Performance n-Type MoTe2 Transistors. , 2019, Nano letters.

[9]  A. Pan,et al.  Van der Waals epitaxial growth of vertically stacked Sb2Te3/MoS2 p–n heterojunctions for high performance optoelectronics , 2019, Nano Energy.

[10]  H. Jeong,et al.  Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors , 2019, Nature.

[11]  Seungmin Lee,et al.  Lowering the Schottky Barrier Height by Graphene/Ag Electrodes for High‐Mobility MoS2 Field‐Effect Transistors , 2018, Advanced materials.

[12]  X. Duan,et al.  Chemical Vapor Deposition Growth of Single Crystalline CoTe2 Nanosheets with Tunable Thickness and Electronic Properties , 2018, Chemistry of Materials.

[13]  Wanlin Guo,et al.  Ultrathin Molybdenum Dioxide Nanosheets as Uniform and Reusable Surface-Enhanced Raman Spectroscopy Substrates with High Sensitivity. , 2018, Small.

[14]  Zhigang Chen,et al.  1D metallic MoO2-C as co-catalyst on 2D g-C3N4 semiconductor to promote photocatlaytic hydrogen production , 2018, Applied Surface Science.

[15]  X. Duan,et al.  Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions , 2018, Nature.

[16]  Takhee Lee,et al.  Contact‐Engineered Electrical Properties of MoS2 Field‐Effect Transistors via Selectively Deposited Thiol‐Molecules , 2018, Advanced materials.

[17]  Lei-Ting Li,et al.  Electro-statically controllable graphene local heater* , 2018 .

[18]  Guangyu Zhang,et al.  Graphene‐Contacted Ultrashort Channel Monolayer MoS2 Transistors , 2017, Advanced materials.

[19]  Xu Cui,et al.  Thickness-dependent Schottky barrier height of MoS2 field-effect transistors. , 2017, Nanoscale.

[20]  J. Miao,et al.  Ultrathin MoO2 nanosheets with good thermal stability and high conductivity , 2017 .

[21]  Faisal Ahmed,et al.  Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. , 2017, ACS nano.

[22]  Zhiyong Fan,et al.  High Mobility MoS2 Transistor with Low Schottky Barrier Contact by Using Atomic Thick h‐BN as a Tunneling Layer , 2016, Advanced materials.

[23]  Prabhat Kumar,et al.  A study on role of partial pressure in controlled synthesis of core-shell MoO2/MoS2 nanoflakes , 2016 .

[24]  Wanlin Guo,et al.  Chemical vapor deposition of ultra-thin molybdenum dioxide nanosheets , 2016 .

[25]  R. Ruoff,et al.  Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. , 2016, Nature nanotechnology.

[26]  Jiaqiang Yan,et al.  Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors. , 2016, Nano letters.

[27]  Kaustav Banerjee,et al.  Electrical contacts to two-dimensional semiconductors. , 2015, Nature materials.

[28]  B. Scrosati,et al.  The role of graphene for electrochemical energy storage. , 2015, Nature materials.

[29]  Qingyu Li,et al.  Synthesis of Sn/MoS₂/C composites as high-performance anodes for lithium-ion batteries , 2015 .

[30]  Sefaattin Tongay,et al.  Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. , 2014, Nano letters.

[31]  Wilman Tsai,et al.  Chloride molecular doping technique on 2D materials: WS2 and MoS2. , 2014, Nano letters.

[32]  P. Ye,et al.  Two-dimensional TaSe2 metallic crystals: spin-orbit scattering length and breakdown current density. , 2014, ACS nano.

[33]  Jiaqiang Yan,et al.  High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. , 2014, Nano letters.

[34]  C. Hu,et al.  Field-effect transistors built from all two-dimensional material components. , 2014, ACS nano.

[35]  A. Sumant,et al.  All two-dimensional, flexible, transparent, and thinnest thin film transistor. , 2014, Nano letters.

[36]  P. Ye,et al.  Molecular Doping of Multilayer ${\rm MoS}_{2}$ Field-Effect Transistors: Reduction in Sheet and Contact Resistances , 2013, IEEE Electron Device Letters.

[37]  Jing Guo,et al.  Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. , 2013, Nano letters.

[38]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[39]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[40]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[41]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[42]  Hideyuki Murata,et al.  Observation of space-charge-limited current due to charge generation at interface of molybdenum dioxide and organic layer , 2009 .

[43]  J. Meindl,et al.  Breakdown current density of graphene nanoribbons , 2009, 0906.4156.

[44]  Hui‐Ming Cheng,et al.  Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. , 2009, ACS nano.