Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG.

A new (to our knowledge) ultrashort laser pulse irradiation regime that allows us to directly modify and increase the refractive index of rare earth doped YAG polycrystalline ceramics has been identified. Single-mode buried channel waveguides in both Ho:YAG and Er:YAG ceramics at the near-IR wavelengths of 1.55 μm and 1.95 μm are demonstrated by fabricating positive square step-index cores. Minimum propagation losses of 1.5 dB cm(-1) at a 1.51 μm wavelength have been preliminarily obtained. Confocal microluminescence mapping reveals that the increased refractive index regions retain the near-IR spectral properties of Er3+ ions in the YAG crystalline matrix.

[1]  Roberta Ramponi,et al.  Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient , 2007 .

[2]  L. Roso,et al.  Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations , 2009 .

[3]  Daniel Jaque,et al.  Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides , 2008 .

[4]  R R Thomson,et al.  Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe. , 2010, Optics letters.

[5]  T A Birks,et al.  Ultrafast laser inscription of an integrated photonic lantern. , 2011, Optics express.

[6]  Peter Dekker,et al.  Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating. , 2008, Optics letters.

[7]  Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments. , 2010, Optics letters.

[8]  D. Reid,et al.  Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes , 2011 .

[9]  Min Gu,et al.  Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal. , 2006, Optics letters.

[10]  D. Luo,et al.  Fabrication and laser properties of transparent Yb:YAG ceramics , 2012 .

[11]  C. Depeursinge,et al.  Femtosecond irradiation induced refractive-index changes and channel waveguiding in bulk Ti/sup 3+/:sapphire , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[12]  Feng Chen,et al.  Thermal optimization and erasing of Nd:YAG proton beam written waveguides. , 2011, Optics letters.

[13]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[14]  R. Osellame,et al.  Femtosecond Laser Inscription of Low Insertion Loss Waveguides in $Z$-Cut Lithium Niobate , 2007, IEEE Photonics Technology Letters.

[15]  Andreas Tünnermann,et al.  Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate , 2006 .

[16]  D. Jaque,et al.  Near-field local enhancement by ordered arrays of sub-wavelength scattering centers fabricated by femtosecond ablation , 2011 .

[17]  D. Jaque,et al.  Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminum garnet laser ceramics , 2008 .

[18]  A. Ródenas,et al.  High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing. , 2011, Optics express.

[19]  Pablo F. Meilan,et al.  Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics. , 2007, Optics express.