Model Based Multiscale Analysis of Film Formation in Lithium‐Ion Batteries

[1]  Kandler Smith,et al.  Modeling detailed chemistry and transport for solid-electrolyte-interface (SEI) films in Li–ion batteries , 2011 .

[2]  E. Peled,et al.  An Advanced Tool for the Selection of Electrolyte Components for Rechargeable Lithium Batteries , 1998 .

[3]  Kevin Leung,et al.  Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes. , 2010, Physical chemistry chemical physics : PCCP.

[4]  Alejandro A. Franco,et al.  Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges , 2013 .

[5]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[6]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[7]  Venkat R. Subramanian,et al.  Model-Based SEI Layer Growth and Capacity Fade Analysis for EV and PHEV Batteries and Drive Cycles , 2014 .

[8]  Chih‐Long Tsai,et al.  On the interfacial charge transfer between solid and liquid Li+ electrolytes. , 2017, Physical chemistry chemical physics : PCCP.

[9]  Petr Novák,et al.  Morphology of the Solid Electrolyte Interphase on Graphite in Dependency on the Formation Current , 2011 .

[10]  Perla B. Balbuena,et al.  Buildup of the Solid Electrolyte Interphase on Lithium-Metal Anodes: Reactive Molecular Dynamics Study , 2018 .

[11]  R. Braatz,et al.  Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-Ion Batteries: Passive Layer Formation , 2011 .

[12]  Thomas Kadyk,et al.  Statistical Physics-Based Model of Solid Electrolyte Interphase Growth in Lithium Ion Batteries , 2017 .

[13]  Abhijit Chatterjee,et al.  An overview of spatial microscopic and accelerated kinetic Monte Carlo methods , 2007 .

[14]  Richard D. Braatz,et al.  Direct coupling of continuum and kinetic Monte Carlo models for multiscale simulation of electrochemical systems , 2019, Comput. Chem. Eng..

[15]  Andreas Jossen Welcome to Batteries—A New Open Access Journal on Battery Technology and Systems , 2015 .

[16]  Phl Peter Notten,et al.  Modeling the SEI-Formation on Graphite Electrodes in LiFePO4 Batteries , 2015 .

[17]  Mark C. Hersam,et al.  In Situ X-ray Study of the Solid Electrolyte Interphase (SEI) Formation on Graphene as a Model Li-ion Battery Anode , 2012 .

[18]  Alejandro A. Franco,et al.  A Multi-Paradigm Computational Model of Materials Electrochemical Reactivity for Energy Conversion and Storage , 2015 .

[19]  Petr Novák,et al.  The influence of the local current density on the electrochemical exfoliation of graphite in lithium-ion battery negative electrodes , 2011 .

[20]  A. Latz,et al.  Dynamics and morphology of solid electrolyte interphase (SEI). , 2016, Physical chemistry chemical physics : PCCP.

[21]  Michael J. Hoffmann,et al.  Influence of temperature and upper cut-off voltage on the formation of lithium-ion cells , 2014 .

[22]  Weishan Li,et al.  Performance improvement of lithium ion battery using PC as a solvent component and BS as an SEI forming additive , 2007 .

[23]  Debasish Mohanty,et al.  The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling , 2016 .

[24]  P. Kent,et al.  Solid–Electrolyte Interphase Formation and Electrolyte Reduction at Li-Ion Battery Graphite Anodes: Insights from First-Principles Molecular Dynamics , 2012 .

[25]  Richard D. Braatz,et al.  Multi-Scale Simulation of Heterogeneous Surface Film Growth Mechanisms in Lithium-Ion Batteries , 2017 .

[26]  M. Safari,et al.  Simulation-Based Analysis of Aging Phenomena in a Commercial Graphite/LiFePO4 Cell , 2011 .

[27]  Simon F. Schuster,et al.  Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression , 2016 .

[28]  Dmitry Bedrov,et al.  Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: a molecular dynamics simulation study using the ReaxFF. , 2012, The journal of physical chemistry. A.

[29]  J. Fergus,et al.  The formation and stability of the solid electrolyte interface on the graphite anode , 2014 .

[30]  A. Latz,et al.  Identifying the Mechanism of Continued Growth of the Solid-Electrolyte Interphase. , 2018, ChemSusChem.

[31]  Robert J. Kee,et al.  Thermodynamically consistent modeling of elementary electrochemistry in lithium-ion batteries , 2010 .

[32]  S. Raël,et al.  Including double-layer capacitance in lithium-ion battery mathematical models , 2014 .

[33]  Diana Golodnitsky,et al.  Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies , 2001 .

[34]  Matthew B. Pinson,et al.  Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction , 2012, 1210.3672.

[35]  John Newman,et al.  Experimental and Theoretical Investigation of Solid-Electrolyte-Interphase Formation Mechanisms on Glassy Carbon , 2013 .

[36]  Peng Lu,et al.  Effects of Inhomogeneities—Nanoscale to Mesoscale—on the Durability of Li-Ion Batteries , 2013 .

[37]  E. Peled,et al.  Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes , 1997 .

[38]  Ralph E. White,et al.  Effect of Porosity on the Capacity Fade of a Lithium-Ion Battery Theory , 2004 .

[39]  U. Krewer,et al.  A Cyclone Flow Cell for Quantitative Analysis of Kinetics at Porous Electrodes by Differential Electrochemical Mass Spectrometry , 2016 .

[40]  Alejandro A. Franco,et al.  A Multiparadigm Modeling Investigation of Membrane Chemical Degradation in PEM Fuel Cells , 2016 .

[41]  J. Janek,et al.  Simultaneous acquisition of differential electrochemical mass spectrometry and infrared spectroscopy data for in situ characterization of gas evolution reactions in lithium-ion batteries , 2015 .

[42]  P. Mukherjee,et al.  Mesoscale Elucidation of Solid Electrolyte Interphase Layer Formation in Li-Ion Battery Anode , 2017 .

[43]  H. Ushiyama,et al.  Multiscale Simulations for Lithium-Ion Batteries: SEI Film Growth and Capacity Fading , 2017 .