Structural and electrical study of CaCu3Ti4O12 (CCTO) obtained in a new ceramic procedure

In this study, the CaCu3Ti4O12 (CCTO) ceramic phase was synthesized by microwave heating in a much shorter time compared with conventional ceramic methods. The results indicate that the microwave processing is a promising method for preparing CCTO ceramics. CCTO was prepared using a domestic microwave oven operated at 2.45 GHz with 800 W. The XRD, infrared and Raman scattering spectroscopy was used in the structural studies of the samples. After few minutes of microwaves irradiation the formation of CCTO was confirmed by the X-ray powder diffraction. Electrical measurements was performed and shows that the dielectric permittivity of the samples are in the order of 106.

[1]  K. Varma,et al.  Effect of sintering conditions on the dielectric properties of CaCu3Ti4O12 and La2/3Cu3Ti4O12 ceramics : A comparative study , 2006 .

[2]  X. Chen,et al.  Microstructure-dependent giant dielectric response in CaCu3Ti4O12 ceramics , 2006 .

[3]  A. G. S. Filho,et al.  Raman scattering and x-ray diffraction studies of polycrystalline $Ca Cu _3 Ti _4 O _{12}$ under high-pressureF , 2004 .

[4]  N. Kolev,et al.  Raman spectroscopy of CaCu3Ti4O12 , 2002 .

[5]  B. Bochu,et al.  Synthèse et caractérisation d'une série de titanates pérowskites isotypes de [CaCu3](Mn4)O12 , 1979 .

[6]  L. Azároff,et al.  Elements of X-ray crystallography , 1968 .

[7]  M. Valente,et al.  Dielectric properties of BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) composite screen-printed thick films for high dielectric constant devices in the medium frequency (MF) range , 2004 .

[8]  B. Vaidhyanathan,et al.  A Novel Method of Preparation of Inorganic Glasses by Microwave Irradiation , 1994 .

[9]  A. S. B. Sombra,et al.  Dielectric relaxation of BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) composite screen-printed thick films at low temperatures , 2006 .

[10]  Y. Koike,et al.  Rapid Preparation of YBa 2Cu 3O7-x with T c ∼ 90 K Using a Domestic Microwave Oven , 1997 .

[11]  W. Beeré Inhibition of intergranular cavity growth in precipitate-hardened materials , 1980 .

[12]  A. G. S. Filho,et al.  Structural properties of CaCu3Ti4O12 obtained by mechanical alloying , 2002 .

[13]  J. Fierro,et al.  Characterization of zinc oxide and zinc ferrite doped with Ti or Cu as sorbents for hot gas desulphurization , 1997 .

[14]  B. Vaidhyanathan,et al.  Synthesis of Ti, Ga, and V Nitrides: Microwave-Assisted Carbothermal Reduction and Nitridation† , 1997 .

[15]  B. Vaidhyanathan,et al.  High Microwave Susceptibility of NaH2PO4·2H2O: Rapid Synthesis of Crystalline and Glassy Phosphates with NASICON-Type Chemistry , 1997 .

[16]  N. Kolev,et al.  Raman spectroscopy of CaCu 3 Ti 4 O 12 , 2002 .

[17]  P. Ramesh,et al.  Microwave‐assisted synthesis of aluminum nitride , 1995 .

[18]  H. Rietveld Line profiles of neutron powder-diffraction peaks for structure refinement , 1967 .

[19]  Arthur W. Sleight,et al.  High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases , 2000 .

[20]  I. Davidson,et al.  Microwave Synthesis of Li1.025Mn1.975 O 4 and Li1 + x Mn2 − x O 4 − y F y ( x = 0.05 , 0.15 ; y = 0.05 , 0.1 ) , 2000 .

[21]  A. Ganguli,et al.  Polymeric citrate precursor route to the synthesis of the high dielectric constant oxide, CaCu3Ti4O12 , 2003 .

[22]  K. Furic,et al.  Chemical and micro structural properties of TiO2 synthesized by sol-gel procedure , 1997 .

[23]  B. Vaidhyanathan,et al.  Microwave assisted synthesis of technologically important transition metal silicides , 1997 .

[24]  H. Loye,et al.  Microwave Synthesis of Ternary Nitride Materials , 1997 .

[25]  A. S. B. Sombra,et al.  Electrical and optical properties of CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas , 2003 .

[26]  D. Mingos,et al.  Microwave syntheses for superconducting ceramics , 1988, Nature.

[27]  J. L. Baptista,et al.  DiC12: Magnesium titanate microwave dielectric ceramics , 1992 .

[28]  Liquan Chen,et al.  Microwave synthesis of LiCoO2 cathode materials , 1997 .

[29]  Chun-ting Wang,et al.  Microstructure and electrical properties of CaCu3Ti4O12 ceramics , 2006 .

[30]  M. Gasgnier,et al.  Rare earth iron garnets and rare earth iron binary oxides synthesized by microwave monomode , 1998 .

[31]  A. Hernandes,et al.  Piezoelectric lithium niobate obtained by mechanical alloying , 1998 .

[32]  R. Smith,et al.  CaCu3Ti4O12: Low-Temperature Synthesis by Pyrolysis of an Organic Solution , 2006 .

[33]  Margaret L. Gardel,et al.  Giant dielectric constant response in a copper-titanate , 2000 .

[34]  D. Mingos,et al.  Microwave-assisted solid-state reactions involving metal powders , 1992 .

[35]  Thierry Lebey,et al.  Dielectric properties of CaCu 3Ti 4O 12 based multiphased ceramics , 2006 .

[36]  H. Gleiter,et al.  Materials with ultrafine microstructures: Retrospectives and perspectives , 1992 .

[37]  J. Jokisaari,et al.  Processing of single phase Mo5Si3 by microwave activated combustion synthesis , 2002 .

[38]  Kikuo Wakino,et al.  Recent development of dielectric resonator materials and filters in Japan , 1989 .

[39]  H. Takizawa,et al.  Microwave Synthesis of Yttrium Aluminum Iron Garnet Powder , 2001 .

[40]  A. Sleight,et al.  ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy , 2002 .

[41]  B. Vaidhyanathan,et al.  Synthesis of β-SiC powder by use of microwave radiation , 1994 .