Shading Curves: Vector‐Based Drawing With Explicit Gradient Control

A challenge in vector graphics is to define primitives that offer flexible manipulation of colour gradients. We propose a new primitive, called a shading curve, that supports explicit and local gradient control. This is achieved by associating shading profiles to each side of the curve. These shading profiles, which can be manually manipulated, represent the colour gradient out from their associated curves. Such explicit and local gradient control is challenging to achieve via the diffusion curve process, introduced in 2008, because it offers only implicit control of the colour gradient. We resolve this problem by using subdivision surfaces that are constructed from shading curves and their shading profiles.

[1]  NießnerMatthias,et al.  Feature-adaptive GPU rendering of Catmull-Clark subdivision surfaces , 2012 .

[2]  Olga Sorkine-Hornung,et al.  Ink-and-ray: Bas-relief meshes for adding global illumination effects to hand-drawn characters , 2014, TOGS.

[3]  Scott F. Johnston Lumo: illumination for cel animation , 2002, NPAR '02.

[4]  John Snyder,et al.  Freeform vector graphics with controlled thin-plate splines , 2011, ACM Trans. Graph..

[5]  Pascal Barla,et al.  Diffusion curves: a vector representation for smooth-shaded images , 2008, ACM Trans. Graph..

[6]  Adrien Bousseau,et al.  Depicting stylized materials with vector shade trees , 2013, ACM Trans. Graph..

[7]  Alfred M. Bruckstein,et al.  Subpixel distance maps and weighted distance transforms , 1993, Optics & Photonics.

[8]  Joëlle Thollot,et al.  Diffusion constraints for vector graphics , 2010, NPAR.

[9]  Michael S. Brown,et al.  ShapePalettes: interactive normal transfer via sketching , 2007, SIGGRAPH 2007.

[10]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[11]  Alexandrina Orzan,et al.  Texture Design and Draping in 2D Images , 2016 .

[12]  W. Walthen-Dunn A Transformation for Extracting New De scriptors of Shape ' , in , 2017 .

[13]  Joaquim A. Jorge,et al.  NaturaSketch: Modeling from Images and Natural Sketches , 2011, IEEE Computer Graphics and Applications.

[14]  Nathan A. Carr,et al.  Repoussé: automatic inflation of 2D artwork , 2008, SBM'08.

[15]  Alfred M. Bruckstein,et al.  Sub-pixel distance maps and weighted distance transforms , 1996, Journal of Mathematical Imaging and Vision.

[16]  Harry Shum,et al.  ShapePalettes: interactive normal transfer via sketching , 2007, ACM Trans. Graph..

[17]  James Andrews,et al.  A Linear Variational System for Modelling From Curves , 2011, Comput. Graph. Forum.

[18]  Giovanni Civardi Drawing light & shade : understanding chiaroscuro , 2006 .

[19]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[20]  Jörg Peters,et al.  Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.

[21]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[22]  Adrien Bousseau,et al.  CrossShade: shading concept sketches using cross-section curves , 2012, ACM Trans. Graph..

[23]  Cyril Concolato,et al.  Biharmonic diffusion curve images from boundary elements , 2013, ACM Trans. Graph..

[24]  Pascal Barla,et al.  A vectorial solver for free-form vector gradients , 2012, ACM Trans. Graph..

[25]  Tony DeRose,et al.  Feature-adaptive GPU rendering of Catmull-Clark subdivision surfaces , 2012, TOGS.