Morphology and effective properties of multi-scale random sets: A review
暂无分享,去创建一个
[1] Hugues Talbot,et al. Mathematical Morphology: from theory to applications , 2013 .
[2] D. Jeulin. Analysis and Modeling of 3D Microstructures , 2013 .
[3] Hellen Altendorf,et al. 3D morphological analysis and modeling of random fiber networks: applied on glass fiber reinforced composites , 2011 .
[4] D. Jeulin. Multi-scale random sets: from morphology to effective properties and to fracture statistics , 2011 .
[5] J. Renard,et al. Étude numérique et statistique du comportement d'un composite thermoplastique , 2011 .
[6] Dominique Jeulin,et al. Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image , 2011 .
[7] D. Jeulin,et al. A multiscale microstructure model of carbon black distribution in rubber , 2011, Journal of microscopy.
[8] D. Jeulin. Multi Scale Random Models of Complex Microstructures , 2010 .
[9] D. Jeulin,et al. Elastic behavior of composites containing Boolean random sets of inhomogeneities , 2009 .
[10] Christian Soize,et al. Theoretical framework and experimental procedure for modelling mesoscopic volume fraction stochastic fluctuations in fiber reinforced composites , 2008 .
[11] D. Jeulin,et al. 3D complex shape characterization by statistical analysis : Application to aluminium alloys , 2008 .
[12] A. Yu,et al. Multiscale modeling and simulation of polymer nanocomposites , 2008 .
[13] P. Suquet,et al. On the influence of local fluctuations in volume fraction of constituents on the effective properties of nonlinear composites. Application to porous materials , 2007 .
[14] D. Jeulin,et al. Percolation d'agrégats multi-échelles de sphères et de fibres – Application aux nanocomposites , 2006 .
[15] Dominique Jeulin,et al. Apparent and effective physical properties of heterogeneous materials: Representativity of samples of two materials from food industry , 2006 .
[16] D. Jeulin,et al. Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .
[17] D. Jeulin,et al. Caractérisation morphologique et porosité en 3D de matériaux fibreux cellulosiques , 2001 .
[18] Dominique Jeulin,et al. Random texture models for material structures , 2000, Stat. Comput..
[19] Dominique Jeulin,et al. Morphological analysis of carbon-polymer composite materials from thick sections , 1999 .
[20] Graeme W. Milton,et al. A fast numerical scheme for computing the response of composites using grid refinement , 1999 .
[21] Hervé Moulinec,et al. A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.
[22] Salvatore Torquato,et al. LETTER TO THE EDITOR: Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model , 1997 .
[23] D. Jeulin,et al. Size effect on elastic properties of random composites , 1994 .
[24] C. Lantuéjoul,et al. Ergodicity and integral range , 1991 .
[25] Dominique Jeulin,et al. Caractéristiques morphologiques des constituants et comportement à la limite élastique d'un matériau biphasé Fe/Ag , 1989 .
[26] Torquato,et al. Effective properties of two-phase disordered composite media: II. Evaluation of bounds on the conductivity and bulk modulus of dispersions of impenetrable spheres. , 1986, Physical review. B, Condensed matter.
[27] Isaac Balberg,et al. Excluded volume and its relation to the onset of percolation , 1984 .
[28] Graeme W. Milton,et al. Bounds on the elastic and transport properties of two-component composites , 1982 .
[29] Jack C. Smith. The elastic constants of a particulate‐filled glassy polymer: Comparison of experimental values with theoretical predictions , 1976 .
[30] G. Matheron. Random Sets and Integral Geometry , 1976 .
[31] Jack C. Smith. Experimental Values for the Elastic Constants of a Particulate-Filled Glassy Polymer , 1976, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.
[32] M. Beran,et al. Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media , 1966 .
[33] Zvi Hashin,et al. The Elastic Moduli of Heterogeneous Materials , 1962 .
[34] D. Jeulin,et al. LARGE-SCALE COMPUTATIONS OF EFFECTIVE ELASTIC PROPERTIES OF RUBBER WITH CARBON BLACK FILLERS , 2011 .
[35] D. Jeulin,et al. Elastic and electrical behavior of some random multiscale highly-contrasted composites , 2011 .
[36] Dominique Jeulin,et al. Estimating RVE sizes for 2D/3D viscoplastic composite materials , 2006 .
[37] J. Michel,et al. Effect of a nonuniform distribution of voids on the plastic response of voided materials: a computational and statistical analysis , 2005 .
[38] Dietrich Stoyan,et al. The Boolean Model: from Matheron till today , 2005 .
[39] Dominique Jeulin,et al. Random Structures in Physics , 2005 .
[40] D. Jeulin,et al. Multi-scale analysis of the dielectric properties and structure of resin/carbon-black nanocomposites , 2003 .
[41] D. Jeulin,et al. Random Structure Models for Homogenization and Fracture Statistics , 2001 .
[42] M. Stein. Estimating and choosing , 1989 .
[43] Jean Serra,et al. Image Analysis and Mathematical Morphology , 1983 .
[44] G. Matheron. Éléments pour une théorie des milieux poreux , 1967 .