Morphology and effective properties of multi-scale random sets: A review

[1]  Hugues Talbot,et al.  Mathematical Morphology: from theory to applications , 2013 .

[2]  D. Jeulin Analysis and Modeling of 3D Microstructures , 2013 .

[3]  Hellen Altendorf,et al.  3D morphological analysis and modeling of random fiber networks: applied on glass fiber reinforced composites , 2011 .

[4]  D. Jeulin Multi-scale random sets: from morphology to effective properties and to fracture statistics , 2011 .

[5]  J. Renard,et al.  Étude numérique et statistique du comportement d'un composite thermoplastique , 2011 .

[6]  Dominique Jeulin,et al.  Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image , 2011 .

[7]  D. Jeulin,et al.  A multiscale microstructure model of carbon black distribution in rubber , 2011, Journal of microscopy.

[8]  D. Jeulin Multi Scale Random Models of Complex Microstructures , 2010 .

[9]  D. Jeulin,et al.  Elastic behavior of composites containing Boolean random sets of inhomogeneities , 2009 .

[10]  Christian Soize,et al.  Theoretical framework and experimental procedure for modelling mesoscopic volume fraction stochastic fluctuations in fiber reinforced composites , 2008 .

[11]  D. Jeulin,et al.  3D complex shape characterization by statistical analysis : Application to aluminium alloys , 2008 .

[12]  A. Yu,et al.  Multiscale modeling and simulation of polymer nanocomposites , 2008 .

[13]  P. Suquet,et al.  On the influence of local fluctuations in volume fraction of constituents on the effective properties of nonlinear composites. Application to porous materials , 2007 .

[14]  D. Jeulin,et al.  Percolation d'agrégats multi-échelles de sphères et de fibres – Application aux nanocomposites , 2006 .

[15]  Dominique Jeulin,et al.  Apparent and effective physical properties of heterogeneous materials: Representativity of samples of two materials from food industry , 2006 .

[16]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[17]  D. Jeulin,et al.  Caractérisation morphologique et porosité en 3D de matériaux fibreux cellulosiques , 2001 .

[18]  Dominique Jeulin,et al.  Random texture models for material structures , 2000, Stat. Comput..

[19]  Dominique Jeulin,et al.  Morphological analysis of carbon-polymer composite materials from thick sections , 1999 .

[20]  Graeme W. Milton,et al.  A fast numerical scheme for computing the response of composites using grid refinement , 1999 .

[21]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[22]  Salvatore Torquato,et al.  LETTER TO THE EDITOR: Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model , 1997 .

[23]  D. Jeulin,et al.  Size effect on elastic properties of random composites , 1994 .

[24]  C. Lantuéjoul,et al.  Ergodicity and integral range , 1991 .

[25]  Dominique Jeulin,et al.  Caractéristiques morphologiques des constituants et comportement à la limite élastique d'un matériau biphasé Fe/Ag , 1989 .

[26]  Torquato,et al.  Effective properties of two-phase disordered composite media: II. Evaluation of bounds on the conductivity and bulk modulus of dispersions of impenetrable spheres. , 1986, Physical review. B, Condensed matter.

[27]  Isaac Balberg,et al.  Excluded volume and its relation to the onset of percolation , 1984 .

[28]  Graeme W. Milton,et al.  Bounds on the elastic and transport properties of two-component composites , 1982 .

[29]  Jack C. Smith The elastic constants of a particulate‐filled glassy polymer: Comparison of experimental values with theoretical predictions , 1976 .

[30]  G. Matheron Random Sets and Integral Geometry , 1976 .

[31]  Jack C. Smith Experimental Values for the Elastic Constants of a Particulate-Filled Glassy Polymer , 1976, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[32]  M. Beran,et al.  Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media , 1966 .

[33]  Zvi Hashin,et al.  The Elastic Moduli of Heterogeneous Materials , 1962 .

[34]  D. Jeulin,et al.  LARGE-SCALE COMPUTATIONS OF EFFECTIVE ELASTIC PROPERTIES OF RUBBER WITH CARBON BLACK FILLERS , 2011 .

[35]  D. Jeulin,et al.  Elastic and electrical behavior of some random multiscale highly-contrasted composites , 2011 .

[36]  Dominique Jeulin,et al.  Estimating RVE sizes for 2D/3D viscoplastic composite materials , 2006 .

[37]  J. Michel,et al.  Effect of a nonuniform distribution of voids on the plastic response of voided materials: a computational and statistical analysis , 2005 .

[38]  Dietrich Stoyan,et al.  The Boolean Model: from Matheron till today , 2005 .

[39]  Dominique Jeulin,et al.  Random Structures in Physics , 2005 .

[40]  D. Jeulin,et al.  Multi-scale analysis of the dielectric properties and structure of resin/carbon-black nanocomposites , 2003 .

[41]  D. Jeulin,et al.  Random Structure Models for Homogenization and Fracture Statistics , 2001 .

[42]  M. Stein Estimating and choosing , 1989 .

[43]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[44]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .