Pricing Discrete Barrier and Hindsight Options with the Tridiagonal Probability Algorithm

This paper develops an algorithm to calculate the Brownian multivariate normal probability subject to any preset error tolerance criteria. The algorithm is founded upon the computational simplicity of the tridiagonal structure of the inverse of the Brownian correlation matrix. Compared with existing pricing technologies without the "barrier too close" problem, our calculation method can produce a more accurate and efficient analytic evaluation of barrier options monitored at discrete instants with well- or ill-behaved barrier levels, or discrete hindsight options, for a reasonably large number of monitorings.

[1]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[2]  P. Glasserman,et al.  A Continuity Correction for Discrete Barrier Options , 1997 .

[3]  P. Boyle A Lattice Framework for Option Pricing with Two State Variables , 1988, Journal of Financial and Quantitative Analysis.

[4]  Phelim P. Boyle,et al.  An explicit finite difference approach to the pricing of barrier options , 1998 .

[5]  G. O. Wesolowsky,et al.  On the computation of the bivariate normal integral , 1990 .

[6]  N. Kunitomo,et al.  Pricing Options With Curved Boundaries , 1992 .

[7]  Jason Zhanshun Wei,et al.  Valuation of Discrete Barrier Options by Interpolations , 1998 .

[8]  C. W. Dunnett,et al.  The Numerical Evaluation of Certain Multivariate Normal Integrals , 1962 .

[9]  Mark Broadie,et al.  Connecting discrete and continuous path-dependent options , 1999, Finance Stochastics.

[10]  P. Ritchken On Pricing Barrier Options , 1995 .

[11]  Harry M. Kat,et al.  Discrete Partial Barrier Options with a Moving Barrier , 2001 .

[12]  Mark D. Schroder,et al.  A Reduction Method Applicable to Compound Option Formulas , 1989 .

[13]  Phelim P. Boyle,et al.  Bumping Up Against the Barrier with the Binomial Method , 1994 .

[14]  P. Boyle Option Valuation Using a Three Jump Process , 1986 .

[15]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[16]  J. Emanuel,et al.  Breaking down the barriers , 2002, Nature.

[17]  A.C.F. Vorst,et al.  Breaking down Barriers , 1996 .

[18]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .