Statistics of critical points of Gaussian fields on large-dimensional spaces.

We calculate the average number of critical points of a Gaussian field on a high-dimensional space as a function of their energy and their index. Our results give a complete picture of the organization of critical points and are of relevance to glassy and disordered systems and landscape scenarios coming from the anthropic approach to string theory.

[1]  Y. Fyodorov,et al.  Classical particle in a box with random potential: Exploiting rotational symmetry of replicated Hamiltonian , 2006, cond-mat/0610035.

[2]  S. Majumdar,et al.  Large deviations of extreme eigenvalues of random matrices. , 2006, Physical review letters.

[3]  Richard Easther,et al.  Cosmology from random multifield potentials , 2005, hep-th/0512050.

[4]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[5]  Julius Jellinek,et al.  Energy Landscapes: With Applications to Clusters, Biomolecules and Glasses , 2005 .

[6]  S. Zelditch,et al.  Critical Points and Supersymmetric Vacua I , 2004, math/0402326.

[7]  Y. Fyodorov Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices. , 2004, Physical review letters.

[8]  P. Debenedetti,et al.  Saddles in the energy landscape: extensivity and thermodynamic formalism. , 2003, Physical review letters.

[9]  D. Wales Energy Landscapes by David Wales , 2004 .

[10]  G. Parisi,et al.  Geometric approach to the dynamic glass transition. , 2001, Physical review letters.

[11]  Charusita Chakravarty,et al.  Comparison of inherent, instantaneous, and saddle configurations of the bulk Lennard-Jones system , 2001 .

[12]  J. Doye,et al.  Saddle Points and Dynamics of Lennard-Jones Clusters, Solids and Supercooled Liquids , 2001, cond-mat/0108310.

[13]  A. Cavagna,et al.  Energy landscape of a lennard-jones liquid: statistics of stationary points. , 2000, Physical review letters.

[14]  J. P. Garrahan,et al.  Index distribution of random matrices with an application to disordered systems , 1999, cond-mat/9907296.

[15]  J M Chabot,et al.  [France 1]. , 2000, La Revue du praticien.

[16]  A. Cavagna Fragile vs. strong liquids: A saddles-ruled scenario , 1999, cond-mat/9910244.

[17]  M. Virasoro,et al.  Quasi-equilibrium interpretation of ageing dynamics , 1999, cond-mat/9907438.

[18]  G. Parisi,et al.  STATIONARY POINTS OF THE THOULESS-ANDERSON-PALMER FREE ENERGY , 1998 .

[19]  L. Laloux,et al.  Phase space geometry and slow dynamics , 1995, cond-mat/9510079.

[20]  Cugliandolo,et al.  Large time nonequilibrium dynamics of a particle in a random potential. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  M. Mézard,et al.  On mean field glassy dynamics out of equilibrium , 1994 .

[22]  D. Dean,et al.  Perturbation schemes for flow in random media , 1994 .

[23]  A. Engel Replica symmetry breaking in zero dimension , 1993 .

[24]  Dynamics of manifolds in random media: the selfconsistent Hartree approximation , 1993 .

[25]  Giorgio Parisi,et al.  Replica field theory for random manifolds , 1991 .

[26]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[27]  E. Wigner,et al.  On the statistical distribution of the widths and spacings of nuclear resonance levels , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.