Transverse mode interaction via stimulated Raman scattering comb in a silica microcavity.

Comb generation in different mode families via a stimulated Raman scattering (SRS) process is studied using a silica toroid microcavity. The broad gain bandwidth of SRS in silica allows us to excite longitudinal modes at long wavelengths belonging to mode families that are either the same as or different from the pump mode. We found through experiment and numerical analysis, that an SRS comb in a different mode family with a high quality factor (Q) is excited when we pump in a low-Q mode. No transverse mode interaction occurs when we excite in a high-Q mode resulting the generation of a single comb family. We studied the condition of the transverse mode interaction while varying the mode overlap and Q of the Raman mode. Our experimental results are in good agreement with the analysis and this enables us to control the generation of one- and two-mode combs.

[1]  Jian Wang,et al.  Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs. , 2012, Optics express.

[2]  K. Vahala,et al.  Ultralow-threshold Raman laser using a spherical dielectric microcavity , 2002, Nature.

[3]  Nathan R. Newbury,et al.  Searching for applications with a fine-tooth comb , 2011 .

[4]  Hermann A. Haus,et al.  Raman response function of silica-core fibers , 1989, Annual Meeting Optical Society of America.

[5]  I. Coddington,et al.  Dual-comb spectroscopy. , 2016, Optica.

[6]  M. Lauermann,et al.  Coherent terabit communications with microresonator Kerr frequency combs , 2013, Nature Photonics.

[7]  Cyrus D. Cantrell,et al.  Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function , 2002 .

[8]  Kerry J. Vahala,et al.  Stokes solitons in optical microcavities , 2016, Nature Physics.

[9]  Vladimir S. Ilchenko,et al.  On cavity modification of stimulated Raman scattering , 2003 .

[10]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[11]  R. Lefever,et al.  Spatial dissipative structures in passive optical systems. , 1987, Physical review letters.

[12]  K. Vahala,et al.  Microresonator frequency comb optical clock , 2013, 1309.3525.

[13]  Yanne K Chembo,et al.  Phase-locking transition in Raman combs generated with whispering gallery mode resonators. , 2016, Optics letters.

[14]  K.J. Vahala,et al.  Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Lute Maleki,et al.  Tunable optical frequency comb with a crystalline whispering gallery mode resonator. , 2008, Physical review letters.

[16]  Nan Yu,et al.  Spatiotemporal dynamics of Kerr-Raman optical frequency combs , 2015 .

[17]  G. Agrawal,et al.  Raman response function for silica fibers. , 2006, Optics letters.

[18]  Vittorio M. N. Passaro,et al.  Investigation of SOI Raman Lasers for Mid-Infrared Gas Sensing , 2009, Sensors.

[19]  Ashley J. Maker,et al.  Titanium-enhanced Raman microcavity laser. , 2014, Optics letters.

[20]  R. Holzwarth,et al.  Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators , 2013, Nature Communications.

[21]  Michal Lipson,et al.  Modelocked mid-infrared frequency combs in a silicon microresonator , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[22]  Lute Maleki,et al.  Ultralow-threshold Raman lasing with CaF2 resonators. , 2007, Optics letters.

[23]  Lute Maleki,et al.  Efficient Raman laser based on a CaF 2 resonator , 2008 .

[24]  Tobias J Kippenberg,et al.  Compact, fiber-compatible, cascaded Raman laser. , 2003, Optics letters.

[25]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[26]  Kerry J. Vahala,et al.  Microresonator soliton dual-comb spectroscopy , 2016, Science.

[27]  K. Vahala,et al.  Ultralow-threshold microcavity Raman laser on a microelectronic chip. , 2004, Optics letters.

[28]  T. Sylvestre,et al.  Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. , 2012, Optics letters.

[29]  I. Bulu,et al.  On-Chip Diamond Raman Laser , 2015, 1509.00373.

[30]  Yoshitaka Inui,et al.  A micrometre-scale Raman silicon laser with a microwatt threshold , 2013, Nature.

[31]  Takasumi Tanabe,et al.  Hysteresis behavior of Kerr frequency comb generation in a high-quality-factor whispering-gallery-mode microcavity , 2016 .

[32]  Yun-Feng Xiao,et al.  Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity. , 2013, Optics letters.

[33]  A. Matsko,et al.  Stabilization of a Kerr frequency comb oscillator. , 2013, Optics letters.

[34]  Nicolas Godbout,et al.  Raman lasing in As₂S₃ high-Q whispering gallery mode resonators. , 2013, Optics letters.

[35]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[36]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[37]  Wolfgang Freude,et al.  Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications. , 2015, Physical review letters.

[38]  Hyungwoo Choi,et al.  High Efficiency Raman Lasers Based on Zr-Doped Silica Hybrid Microcavities , 2016 .

[39]  Omri Raday,et al.  A cascaded silicon Raman laser , 2008 .