Rapid generation advance (RGA) in chickpea to produce up to seven generations per year and enable speed breeding

[1]  J. Croser,et al.  In vitro-assisted single-seed descent for breeding-cycle compression in subterranean clover (Trifolium subterraneum L.) , 2017, Crop and Pasture Science.

[2]  J. Batley,et al.  Speed breeding: a powerful tool to accelerate crop research and breeding , 2017, bioRxiv.

[3]  Hui Liu,et al.  A fast generation cycling system for oat and triticale breeding , 2016 .

[4]  R. Creasy,et al.  Time to flowering of temperate pulses in vivo and generation turnover in vivo–in vitro of narrow-leaf lupin accelerated by low red to far-red ratio and high intensity in the far-red region , 2016, Plant Cell, Tissue and Organ Culture (PCTOC).

[5]  T. Warkentin,et al.  Plant Tissue Culture , 1991, Bio/Technology.

[6]  K. Schmid,et al.  Crossing Methods and Cultivation Conditions for Rapid Production of Segregating Populations in Three Grain Amaranth Species , 2016, Front. Plant Sci..

[7]  D. L. George,et al.  Development and Application of Speed Breeding Technologies in a Commercial Peanut Breeding Program , 2013 .

[8]  M. Germanà Anther culture for haploid and doubled haploid production , 2011, Plant Cell, Tissue and Organ Culture (PCTOC).

[9]  S. Bhattarai,et al.  In vitro culture of immature seed for rapid generation advancement in tomato , 2009, Euphytica.

[10]  S. Ochatt,et al.  In vitro shortening of generation time in Arabidopsis thaliana , 2008, Plant Cell, Tissue and Organ Culture.

[11]  C. Gowda,et al.  Rapid generation advancement in chickpea , 2007 .

[12]  P. A. Davies,et al.  Toward Doubled Haploid Production in the Fabaceae: Progress, Constraints, and Opportunities , 2006 .

[13]  A. L. Carpena,et al.  Rapid generation advancement in soyabeans using immature seeds. , 2006 .

[14]  R. Henry The wake of the double helix - From the green revolution to the gene revolution' , 2006 .

[15]  T. Warkentin,et al.  CDC Frontier kabuli chickpea , 2005 .

[16]  Edgar P. Spalding,et al.  Illuminating topics in plant photobiology , 2005 .

[17]  I. Szarejko,et al.  Induced mutations in the Green and Gene Revolutions , 2005 .

[18]  R. Summerfield,et al.  Field evaluation of a model of photothermal flowering responses in a world lentil collection , 1994, Theoretical and Applied Genetics.

[19]  C. Srinivasan,et al.  In-vitro morphogenesis of corn (Zea mays L.) , 1992, Planta.

[20]  S. B. Narasimhulu,et al.  In vitro flowering and pod formation from cotyledons of groundnut (Arachis hypogaea L.) , 1984, Theoretical and Applied Genetics.

[21]  J. Clarke,et al.  Acceleration of generation advancement in spring wheat , 2004, Euphytica.

[22]  P. Perney,et al.  New approaches towards the shortening of generation cycles for faster breeding of protein legumes , 2002 .

[23]  R. Summerfield,et al.  Towards the Reliable Prediction of Time to Flowering in Six Annual Crops. III. Cowpea Vigna unguiculata , 1994, Experimental Agriculture.

[24]  G. Kalloo Pea: Pisum sativum L. , 1993 .

[25]  E. H. Roberts,et al.  Towards the Reliable Prediction of Time to Flowering in Six Annual Crops. I. The Development of Simple Models for Fluctuating Field Environments , 1991, Experimental Agriculture.

[26]  Royal D. Heins,et al.  Control of plant morphogenesis and flowering by light quality and temperature. , 1990 .

[27]  E. H. Roberts,et al.  Effects of Temperature and Photoperiod on Flowering in Lentils (Lens culinaris Medic.) , 1985 .