A Cluster-Validity Index Combining an Overlap Measure and a Separation Measure Based on Fuzzy-Aggregation Operators

Since a clustering algorithm can produce as many partitions as desired, one needs to assess their quality in order to select the partition that most represents the structure in the data, if there is any. This is the rationale for the cluster-validity (CV) problem and indices. This paper presents a CV index that helps to find the optimal number of clusters of data from partitions generated by a fuzzy-clustering algorithm, such as the fuzzy c-means (FCM) or its derivatives. Given a fuzzy partition, this new index uses a measure of multiple cluster overlap and a separation measure for each data point, both based on an aggregation operation of membership degrees. Experimental results on artificial and benchmark datasets are given to demonstrate the performance of the proposed index, as compared with traditional and recent indices.

[1]  Ricardo J. G. B. Campello,et al.  Generalized external indexes for comparing data partitions with overlapping categories , 2010, Pattern Recognit. Lett..

[2]  James C. Bezdek,et al.  Visual Assessment of Clustering Tendency for Rectangular Dissimilarity Matrices , 2007, IEEE Transactions on Fuzzy Systems.

[3]  Raghunathan Rengaswamy,et al.  A New Cluster Validity Index for Fuzzy Clustering Based on Similarity Measure , 2007, RSFDGrC.

[4]  M. P. Windham Numerical classification of proximity data with assignment measures , 1985 .

[5]  R. Mesiar,et al.  Logical, algebraic, analytic, and probabilistic aspects of triangular norms , 2005 .

[6]  R. Mesiar,et al.  Aggregation operators: properties, classes and construction methods , 2002 .

[7]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[8]  Hichem Frigui,et al.  Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. II , 1995, IEEE Trans. Fuzzy Syst..

[9]  Hoel Le Capitaine,et al.  A Family of Cluster Validity Indexes Based on a l-Order Fuzzy OR Operator , 2008, SSPR/SPR.

[10]  Thierry Denoeux,et al.  ECM: An evidential version of the fuzzy c , 2008, Pattern Recognit..

[11]  Christian Borgelt,et al.  Finding the Number of Fuzzy Clusters by Resampling , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[12]  Edward M. Riseman,et al.  How Easy is Matching 2D Line Models Using Local Search? , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Soon-H. Kwon Cluster validity index for fuzzy clustering , 1998 .

[14]  James C. Bezdek,et al.  Validity-guided (re)clustering with applications to image segmentation , 1996, IEEE Trans. Fuzzy Syst..

[15]  Mohammad Hossein Fazel Zarandi,et al.  A New Cluster Validity Index for Fuzzy Clustering Based on Similarity Measure. , 2007 .

[16]  Mohammad Hossein Fazel Zarandi,et al.  Retracted Article: A New Cluster Validity Index for Fuzzy Clustering Based on Similarity Measure , 2009 .

[17]  Roelof K. Brouwer Extending the rand, adjusted rand and jaccard indices to fuzzy partitions , 2008, Journal of Intelligent Information Systems.

[18]  Weina Wang,et al.  On fuzzy cluster validity indices , 2007, Fuzzy Sets Syst..

[19]  Miin-Shen Yang,et al.  A cluster validity index for fuzzy clustering , 2005, Pattern Recognit. Lett..

[20]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[21]  Ujjwal Maulik,et al.  Validity index for crisp and fuzzy clusters , 2004, Pattern Recognit..

[22]  Laurent Mascarilla,et al.  A k-order fuzzy OR operator for pattern classification with k-order ambiguity rejection , 2008, Fuzzy Sets Syst..

[23]  Hoel Le Capitaine,et al.  A fuzzy modeling approach to cluster validity , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[24]  Bogdan J. Matuszewski,et al.  Development and evaluation of fast branch-and-bound algorithm for feature matching based on line segments , 2007, Pattern Recognit..

[25]  Y. Fukuyama,et al.  A new method of choosing the number of clusters for the fuzzy c-mean method , 1989 .

[26]  G. Klir Uncertainty and Information: Foundations of Generalized Information Theory , 2005 .

[27]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[28]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Roelof K. Brouwer Permutation clustering using the proximity matrix , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[30]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[31]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Ronald R. Yager,et al.  On t-norms based measures of specificity , 2003, Fuzzy Sets Syst..

[33]  Shengrui Wang,et al.  An objective approach to cluster validation , 2006, Pattern Recognit. Lett..

[34]  Boudewijn P. F. Lelieveldt,et al.  A new cluster validity index for the fuzzy c-mean , 1998, Pattern Recognit. Lett..

[35]  James C. Bezdek,et al.  Some new indexes of cluster validity , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[36]  M. Roubens Pattern classification problems and fuzzy sets , 1978 .

[37]  James M. Keller,et al.  Fuzzy Models and Algorithms for Pattern Recognition and Image Processing , 1999 .

[38]  W. Peizhuang Pattern Recognition with Fuzzy Objective Function Algorithms (James C. Bezdek) , 1983 .

[39]  Doheon Lee,et al.  On cluster validity index for estimation of the optimal number of fuzzy clusters , 2004, Pattern Recognit..

[40]  Isak Gath,et al.  Detection and Separation of Ring-Shaped Clusters Using Fuzzy Clustering , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  R. Mesiar,et al.  Aggregation Functions (Encyclopedia of Mathematics and its Applications) , 2009 .

[42]  Nikhil R. Pal On quantification of different facets of uncertainty , 1999, Fuzzy Sets Syst..

[43]  Haiyoung Lee A Cluster validity Index for Fuzzy Clustering , 1999 .

[44]  Hichem Frigui,et al.  The fuzzy c spherical shells algorithm: A new approach , 1992, IEEE Trans. Neural Networks.

[45]  James C. Bezdek,et al.  Visual cluster validity for prototype generator clustering models , 2003, Pattern Recognit. Lett..