Multidimensional generalized Gini indices

Summary.The axioms that characterize the generalized Gini social evaluation orderings for one-dimensional distributions are extended to the multidimensional attributes case. A social evaluation ordering is shown to have a two-stage aggregation representation if these axioms and a separability assumption are satisfied. In the first stage, the distributions of each attribute are aggregated using generalized Gini social evaluation functions. The functional form of the second-stage aggregator depends on the number of attributes and on which version of a comonotonic additivity axiom is used. The implications of these results for the corresponding multidimensional indices of relative and absolute inequality are also considered.

[1]  Charles Blackorby,et al.  Ratio-Scale and Translation-Scale Full Interpersonal Comparability without Domain Restrictions: Admissible Social-Evaluation Functions , 1982 .

[2]  R. Jackson Inequalities , 2007, Algebra for Parents.

[3]  E. Savaglio Multidimensional Inequality: A Survey , 2002 .

[4]  K. Tsui,et al.  Multidimensional inequality and multidimensional generalized entropy measures: An axiomatic derivation , 1999 .

[5]  Thibault Gajdos,et al.  Unequal uncertainties and uncertain inequalities: an axiomatic approach , 2004, J. Econ. Theory.

[6]  Tsui Kai-yuen Social Welfare Orderings for Ratio-Scale Measurable Utilities , 1997 .

[7]  H. Joe Multivariate models and dependence concepts , 1998 .

[8]  A. Sen On Economic Inequality , 1974 .

[9]  Tsui Kai-yuen,et al.  Multidimensional Generalizations of the Relative and Absolute Inequality Indices: The Atkinson-Kolm-Sen Approach , 1995 .

[10]  F. Bourguignon,et al.  The Measurement of Multidimensional Poverty , 2003 .

[11]  B. Arnold Majorization and the Lorenz Order: A Brief Introduction , 1987 .

[12]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[13]  Patrick Suppes,et al.  Mathematical Methods in the Social Sciences , 1962 .

[14]  John A. Weymark,et al.  The Normative Approach to the Measurement of Multidimensional Inequality , 2004 .

[15]  S. Kolm The Optimal Production of Social Justice , 1969 .

[16]  A. Sen,et al.  On Economic Inequality , 1999 .

[17]  Itzhak Gilboa,et al.  On the Measurement of Inequality under Uncertainty , 1997 .

[18]  K. Mosler "Multivariate Dispersion, Central Regions, and Depth": The Lift Zonoid Approach , 2002 .

[19]  Esfandiar Maasoumi,et al.  Multidimensioned Approaches to Welfare Analysis , 1999 .

[20]  F. Bourguignon On the Measurement of Inequality , 2003 .

[21]  S. Karlin,et al.  Mathematical Methods in the Social Sciences , 1962 .

[22]  E. Maasoumi The Measurement and Decomposition of Multi-dimensional Inequality , 1986 .

[23]  G. Debreu Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .

[24]  D. Primont,et al.  Duality, Separability, and Functional Structure: Theory and Economic Applications , 1978 .

[25]  Frank Proschan,et al.  Multivariate arrangement increasing functions with applications in probability and statistics , 1988 .

[26]  Charles Blackorby,et al.  A New Procedure for the Measurement of Inequality within and among Population Subgroups , 1981 .

[27]  Robert A. Pollak,et al.  Additive Utility Functions and Linear Engel Curves , 1971 .

[28]  David Schmeidleis SUBJECTIVE PROBABILITY AND EXPECTED UTILITY WITHOUT ADDITIVITY , 1989 .

[29]  Christian List,et al.  Multidimensional Inequality Measurement: a Proposal , 1999 .

[30]  W. M. Gorman The Structure of Utility Functions , 1968 .

[31]  A. Atkinson,et al.  The Comparison of Multi-Dimensioned Distributions of Economic Status , 1982 .

[32]  W. Bossert,et al.  Utility in Social Choice , 2004 .

[33]  John A. Weymark,et al.  GENERALIZED GIN 1 INEQUALITY INDICES , 2001 .

[34]  曺興植 Inequality, Poverty, and Social Welfare in Korea , 2007 .

[35]  G. Debreu Topological Methods in Cardinal Utility Theory , 1959 .

[36]  Walter Bossert,et al.  Income Inequality Measurement: The Normative Approach , 1999 .

[37]  Amartya Sen,et al.  Handbook of Income Inequality Measurement , 1999 .