Estimation of Forest Structure, Ground, and Canopy Layer Characteristics From Multibaseline Polarimetric Interferometric SAR Data

This paper concerns forest parameter retrieval from polarimetric interferometric synthetic aperture radar (PolInSAR) data considering two layers, one for the ground under the vegetation and one for the volumetric canopy. A model is designed to combine a physical model-based polarimetric decomposition with the random-volume-over-ground (RVoG) PolInSAR parameter inversion approach. The combination of a polarimetric scattering media model with a PolInSAR RVoG vertical structure model provides the possibility to separate the ground and the volume coherency matrices based on polarimetric signatures and interferometric coherence diversity. The proposed polarimetric decomposition characterizes volumetric media by the degree of polarization orientation randomness and by the particle scattering anisotropy. Using the full model enhances the estimation of the vertical forest structure parameters by enabling us to estimate the ground-to-volume ratio, the temporal decorrelation, and the differential extinction. For forest vegetation observed at L-band, this model accounts for the ground topography, forest and canopy layer heights, wave attenuation in the canopy, tree morphology in the form of the angular distribution and the effective shapes of the branches, and the contributions from the ground level consisting of surface scattering and double-bounce ground-trunk interactions, as well as volumetric understory scattering. The parameter estimation performance is evaluated on real airborne L-band SAR data of the Traunstein test site, acquired by the German Aerospace Center (DLR)'s E-SAR sensor in 2003, in both single- and multibaseline configurations. The retrieved forest height is compared with the ground-truth measurements, revealing, for the given test site, an average root-mean-square error (rmse) of about 5 m in the repeat-pass configuration. This implies an improvement in rmse by over 2 m in comparison to the pure coherence-based RVoG PolInSAR parameter inversion.

[1]  Anthony Freeman,et al.  Fitting a Two-Component Scattering Model to Polarimetric SAR Data From Forests , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Irena Hajnsek,et al.  Height Estimation of Boreal Forest: Interferometric Model-Based Inversion at L- and X-Band Versus HUTSCAT Profiling Scatterometer , 2007, IEEE Geoscience and Remote Sensing Letters.

[3]  Fabio Rocca,et al.  Modeling Interferogram Stacks , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Paris W. Vachon,et al.  Coherence estimation for SAR imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[5]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[6]  Laurent Ferro-Famil,et al.  Remote sensing of vegetation using multi-baseline polarimetric SAR interferometry (theoretical modeling and physical parameter retrieval) , 2009 .

[7]  Laurent Ferro-Famil,et al.  Modeling and Interpretation of the Multitemporal and Multibaseline Polinsar Coherence , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[8]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[9]  Roel Snieder The role of nonlinearity in inverse problems , 1998 .

[10]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[11]  Irena Hajnsek,et al.  Quantifying Temporal Decorrelation over Boreal Forest at L- and P-band , 2008 .

[12]  Irena Hajnsek,et al.  Forest biomass estimation using polarimetric SAR interferometry , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[13]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[14]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[15]  Maurizio Santoro,et al.  Tree height influence on ERS interferometric phase in boreal forest , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[16]  R. Treuhaft,et al.  Vertical structure of vegetated land surfaces from interferometric and polarimetric radar , 2000 .

[17]  Jong-Sen Lee,et al.  Surface roughness and slope measurements using polarimetric SAR data , 2002, IEEE Trans. Geosci. Remote. Sens..

[18]  Ballester Berman,et al.  Retrieval of biophysical parameters of agricultural crops using polarimetric sar interferometry , 2011 .

[19]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[20]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[21]  M. Moghaddam,et al.  Vegetation characteristics and underlying topography from interferometric radar , 1996 .

[22]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[23]  Thomas L. Ainsworth,et al.  On the estimation of radar polarization orientation shifts induced by terrain slopes , 2002, IEEE Trans. Geosci. Remote. Sens..

[24]  J. Zyl,et al.  Unsupervised classification of scattering behavior using radar polarimetry data , 1989 .

[25]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[26]  S. R. Cloude,et al.  Multi-baseline polarimetric SAR interferometry for vegetation parameters estimation , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[27]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[28]  Yoshio Yamaguchi,et al.  Polarimetric SAR interferometry for forest analysis based on the ESPRIT algorithm , 2001 .

[29]  Y. Yamaguchi,et al.  CS-1-4 Four-Component Scattering Model for Polarimetric SAR Image Decomposition based on Covariance Matrix(CS-1. 電磁波計測・イメージングと波動情報処理技術, エレクトロニクス1) , 2005 .

[30]  E. Rodríguez,et al.  Theory and design of interferometric synthetic aperture radars , 1992 .

[31]  M. Moghaddam,et al.  Effect of medium symmetries in limiting the number of parameters estimated with polarimetric interferometry , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[32]  Lars M. H. Ulander,et al.  Repeat-pass SAR interferometry over forested terrain , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[33]  M. Hartmann,et al.  Light scattering by small particles. Von H. C. VANDE HULST. New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US $ 7.50 , 1984 .

[34]  Lars M. H. Ulander,et al.  C-band repeat-pass interferometric SAR observations of the forest , 1997, IEEE Trans. Geosci. Remote. Sens..

[35]  Pascale Dubois-Fernandez,et al.  Forest Height Inversion Using High-Resolution P-Band Pol-InSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[37]  M. Neumann,et al.  Recent Advances in the Derivation of POL-inSAR Statistics: Study and Applications , 2008 .

[38]  Fabio Rocca,et al.  The wavenumber shift in SAR interferometry , 1994, IEEE Trans. Geosci. Remote. Sens..

[39]  R. Bamler,et al.  Synthetic aperture radar interferometry , 1998 .

[40]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[41]  S. Cloude,et al.  Three-stage inversion process for polarimetric SAR interferometry , 2003 .

[42]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[43]  Shane Cloude,et al.  The structure of oriented vegetation from polarimetric interferometry , 1999, IEEE Trans. Geosci. Remote. Sens..

[44]  Juan M. Lopez-Sanchez,et al.  Wide-band polarimetric radar inversion studies for vegetation layers , 1999, IEEE Trans. Geosci. Remote. Sens..

[45]  Hiroyoshi Yamada,et al.  A four-component decomposition of POLSAR images based on the coherency matrix , 2006, IEEE Geoscience and Remote Sensing Letters.