Factors affecting the electrification of wind-driven dust studied with laboratory simulations
暂无分享,去创建一个
Per Nornberg | M. B. Nielsen | Haraldur Pall Gunnlaugsson | Jonathan Peter Merrison | M. Madsen | H. P. Gunnlaugsson | M. Nielsen | M. Jensen | J. Merrison | P. Nørnberg | T. A. Ottosen | M. R. Hogg | M. Jensen | J. M. Lykke | M.Bo Madsen | R. T. Pedersen | Steen B. Pedersen | A. V. Sørensen | J. Lykke | T. Ottosen | M. Hogg | A. Sørensen | S. B. Pedersen | R. Pedersen
[1] H. Tsoar,et al. Bagnold, R.A. 1941: The physics of blown sand and desert dunes. London: Methuen , 1994 .
[2] B. Grzybowski,et al. The Mosaic of Surface Charge in Contact Electrification , 2011, Science.
[3] Norikazu Maeno,et al. Wind-Tunnel Experiments on Blowing Snow , 1985, Annals of Glaciology.
[4] Ronald Greeley,et al. Wind as a Geological Process: On Earth, Mars, Venus and Titan , 1985 .
[5] R. Horn,et al. Contact electrification induced by monolayer modification of a surface and relation to acid–base interactions , 1993, Nature.
[6] J F Bell,et al. Magnetic Properties Experiments on the Mars Exploration Rover Spirit at Gusev Crater , 2004, Science.
[7] R. Morris,et al. Mössbauer and VNIR study of dust generated from olivine basalt: application to Mars , 2008 .
[8] K. Kinch,et al. Preliminary analysis of the MER magnetic properties experiment using a computational fluid dynamics model , 2006 .
[9] D. Ming,et al. Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust , 2005, Nature.
[10] Per Nornberg,et al. An environmental simulation wind tunnel for studying Aeolian transport on mars , 2008 .
[11] Jonathan Merrison,et al. The electrical properties of Mars analogue dust , 2004 .
[12] R. Bagnold,et al. The Physics of Blown Sand and Desert Dunes , 1941 .
[13] Per Nornberg,et al. Salten Skov I: A Martian magnetic dust analogue , 2009 .
[14] J. D. Dent,et al. Electrostatic Force in Blowing Snow , 1999 .
[15] R. S. Martin,et al. Electrical Charging of Volcanic Plumes , 2008 .
[16] Per Nornberg,et al. Determination of the wind induced detachment threshold for granular material on Mars using wind tunnel simulations , 2007 .
[17] Günter Kargl,et al. Simulating Martian regolith in the laboratory , 2008 .
[18] J. Kok,et al. Enhancement in wind-driven sand transport by electric fields , 2009 .
[19] G. Landis,et al. Detecting electrical activity from Martian dust storms , 1999 .
[20] An integrated laser anemometer and dust accumulator for studying wind-induced dust transport on Mars , 2006 .
[21] T. Henning,et al. Experiments on Collisional Grain Charging of Micron-sized Preplanetary Dust , 2000 .
[22] Hai Wang,et al. Drag force, diffusion coefficient, and electric mobility of small particles. I. Theory applicable to the free-molecule regime. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[23] Keith M. Forward,et al. Particle‐size dependent bipolar charging of Martian regolith simulant , 2009 .
[24] Keith M. Forward,et al. Charge segregation depends on particle size in triboelectrically charged granular materials. , 2009, Physical review letters.
[25] D. Lacks,et al. Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems , 2007 .
[26] J. Kok,et al. Electrification of wind‐blown sand on Mars and its implications for atmospheric chemistry , 2009, 0901.3672.
[27] Jeffrey R. Johnson,et al. Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at "El Dorado" and surroundings at Gusev Crater , 2008 .
[28] C. Davies,et al. Definitive equations for the fluid resistance of spheres , 1945 .
[29] R. Greeley,et al. Dust devils on Earth and Mars , 2006, Oxford Research Encyclopedia of Planetary Science.