Accuracy of the Adaptive GRP Scheme and the Simulation of 2-D Riemann Problems for Compressible Euler Equations

The adaptive generalized Riemann problem (GRP) scheme for 2-D compressible fluid flows has been proposed in [J. Comput. Phys., 229 (2010), 1448-1466] and it displays the capability in overcoming difficulties such as the start-up error for a single shock, and the numerical instability of the almost stationary shock. In this paper, we will provide the accuracy study and particularly show the performance in simulating 2-D complex wave configurations formulated with the 2-D Riemann problems for compressible Euler equations. For this purpose, we will first review the GRP scheme briefly when combined with the adaptive moving mesh technique and consider the accuracy of the adaptive GRP scheme via the comparison with the explicit formulae of analytic solutions of planar rarefaction waves, planar shock waves, the collapse problem of a wedge-shaped dam and the spiral formation problem. Then we simulate the full set of wave configurations in the 2-D four-wave Riemann problems for compressible Euler equations [SIAM J. Math. Anal., 21 (1990), 593-630], including the interactions of strong shocks (shock reflections), vortex-vortex and shock-vortex etc. This study combines the theoretical results with the numerical simulations, and thus demonstrates what Ami Harten observed “ for computational scientists there are two kinds of truth: the truth that you prove, and the truth you see when you compute ” [J. Sci. Comput., 31 (2007), 185-193].

[1]  Jiequan Li,et al.  Hyperbolic balance laws: Riemann invariants and the generalized Riemann problem , 2007, Numerische Mathematik.

[2]  Sijue Wu Mathematical analysis of vortex sheets , 2006 .

[3]  Tao Tang,et al.  Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..

[4]  Yuxi Zheng,et al.  Systems of Conservation Laws: Two-Dimensional Riemann Problems , 2001 .

[5]  Desheng Wang,et al.  A three-dimensional adaptive method based on the iterative grid redistribution , 2004 .

[6]  J. Flaherty,et al.  An Adaptive Finite Element Method for Initial-Boundary Value Problems for Partial Differential Equations , 1982 .

[7]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[8]  Weizhang Huang,et al.  Variational mesh adaptation: isotropy and equidistribution , 2001 .

[9]  Peter D. Lax,et al.  Computational Fluid Dynamics , 2007, J. Sci. Comput..

[10]  Jianqiang Han,et al.  An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics , 2007, J. Comput. Phys..

[11]  Eitan Tadmor,et al.  Solution of two‐dimensional Riemann problems for gas dynamics without Riemann problem solvers , 2002 .

[12]  Rosa Donat,et al.  Shock-Vortex Interactions at High Mach Numbers , 2003, J. Sci. Comput..

[13]  J. Falcovitz,et al.  A Two-Dimensional Conservation Laws Scheme for Compressible Flows with Moving Boundaries , 1997 .

[14]  Joseph Falcovitz,et al.  Operator-split computation of 3-D symmetric flow , 1999 .

[15]  Jiequan Li,et al.  An adaptive GRP scheme for compressible fluid flows , 2010, J. Comput. Phys..

[16]  Matania Ben-Artzi,et al.  The generalized Riemann problem for reactive flows , 1989 .

[17]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[18]  J. Falcovitz,et al.  An upwind second-order scheme for compressible duct flows , 1986 .

[19]  Yuxi Zheng,et al.  Interaction of Four Rarefaction Waves in the Bi-Symmetric Class of the Two-Dimensional Euler Equations , 2010 .

[20]  Jiequan Li,et al.  The generalized Riemann problem method for the shallow water equations with bottom topography , 2006 .

[21]  Arthur van Dam,et al.  A robust moving mesh finite volume method applied to 1D hyperbolic conservation laws from magnetohydrodynamics , 2006, J. Comput. Phys..

[22]  Wancheng Sheng,et al.  Transonic shock and supersonic shock in the regular reflection of a planar shock , 2009 .

[23]  P. A. Zegeling,et al.  Robust and Efficient Adaptive Moving Mesh Solution of the 2-D Euler equations , 2005 .

[24]  Paul Andries Zegeling,et al.  Balanced monitoring of flow phenomena in moving mesh methods , 2009 .

[25]  Pingwen Zhang,et al.  Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .

[26]  J. Falcovitz,et al.  A second-order Godunov-type scheme for compressible fluid dynamics , 1984 .

[27]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[28]  Tao Tang,et al.  Moving Mesh Methods for Computational Fluid Dynamics , 2022 .

[29]  Robert D. Russell,et al.  A Study of Monitor Functions for Two-Dimensional Adaptive Mesh Generation , 1999, SIAM J. Sci. Comput..

[30]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[31]  Gabi Ben-Dor,et al.  Shock wave reflection phenomena , 1992 .

[32]  James P. Collins,et al.  Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics , 1993, SIAM J. Sci. Comput..

[33]  K. G. Guderley,et al.  The theory of transonic flow , 1963 .

[34]  Gerald Warnecke,et al.  A direct Eulerian GRP scheme for compressible fluid flows , 2006, J. Comput. Phys..

[35]  Jiequan Li,et al.  On the Two-Dimensional Gas Expansion for Compressible Euler Equations , 2002, SIAM J. Appl. Math..

[36]  Yuxi Zheng,et al.  Interaction of Rarefaction Waves of the Two-Dimensional Self-Similar Euler Equations , 2009 .

[37]  J. Falcovitz,et al.  A Singularities Tracking Conservation Laws Scheme for Compressible Duct Flows , 1994 .

[38]  Tiegang Liu,et al.  Implementation of the GRP scheme for computing radially symmetric compressible fluid flows , 2009, J. Comput. Phys..

[39]  Gui-Qiang Chen,et al.  On the 2-D Riemann problem for the compressible Euler equationsI. Interaction of shocks and rarefaction waves , 1995 .

[40]  Gui-Qiang G. Chen,et al.  SOME FUNDAMENTAL CONCEPTS ABOUT SYSTEM OF TWO SPATIAL DIMENSIONAL CONSERVATION LAWS , 1986 .

[41]  Gui-Qiang Chen,et al.  On the 2-D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities , 2000 .

[42]  Mikhail Feldman,et al.  Global Solutions of Shock Reflection by Large-Angle Wedges for Potential Flow , 2007, 0708.2540.

[43]  J. Brackbill An adaptive grid with directional control , 1993 .

[44]  Tong Zhang,et al.  Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems , 1990 .

[45]  Gui-Qiang G. Chen,et al.  DIFFRACTION OF PLANAR SHOCK ALONG COMPRESSIVE CORNER , 1986 .

[46]  Peng Zhang,et al.  Transonic Shock Formation in a Rarefaction Riemann Problem for the 2D Compressible Euler Equations , 2008, SIAM J. Appl. Math..

[47]  Pingwen Zhang,et al.  A Moving Mesh Finite Element Algorithm for Singular Problems in Two and Three Space Dimensions , 2002 .

[48]  Robert D. Russell,et al.  Anr-Adaptive Finite Element Method Based upon Moving Mesh PDEs , 1999 .

[49]  Joseph Falcovitz,et al.  Generalized Riemann Problems in Computational Fluid Dynamics , 2003 .

[50]  Keith Miller,et al.  Moving Finite Elements. I , 1981 .

[51]  Tiegang Liu,et al.  An adaptive ghost fluid finite volume method for compressible gas-water simulations , 2008, J. Comput. Phys..

[52]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[53]  Ruo Li,et al.  Moving Mesh Finite Element Methods for the Incompressible Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..

[54]  Xu-Dong Liu,et al.  Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes , 1998, SIAM J. Sci. Comput..

[55]  A. Dvinsky Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .

[56]  Tong Zhang,et al.  The two-dimensional Riemann problem in gas dynamics , 1998 .

[57]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[58]  J. Brackbill,et al.  Adaptive zoning for singular problems in two dimensions , 1982 .

[59]  Shuxing Chen,et al.  Mach configuration in pseudo-stationary compressible flow , 2007 .