Computing Measure as a Primitive Operation in Real Number Computation

[1]  Felipe Cucker,et al.  Counting complexity classes for numeric computations II: algebraic and semialgebraic sets , 2003, STOC '04.

[2]  Peter Hertling,et al.  Feasible Real Random Access Machines , 1998, J. Complex..

[3]  Arno Pauly,et al.  On the algebraic structure of Weihrauch degrees , 2016, Log. Methods Comput. Sci..

[4]  Arno Pauly,et al.  Non-deterministic computation and the Jayne-Rogers Theorem , 2012, DCM.

[5]  Klaus Weihrauch,et al.  A Tutorial on Computable Analysis , 2008 .

[6]  Denis R. Hirschfeldt,et al.  On notions of computability-theoretic reduction between Π21 principles , 2016, J. Math. Log..

[7]  Arno Pauly,et al.  Closed choice and a Uniform Low Basis Theorem , 2010, Ann. Pure Appl. Log..

[8]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[9]  Vasco Brattka Effective Borel measurability and reducibility of functions , 2005, Math. Log. Q..

[10]  Arno Pauly,et al.  On the topological aspects of the theory of represented spaces , 2012, Comput..

[11]  Arno Pauly,et al.  A topological view on algebraic computation models , 2016, J. Complex..

[12]  Matthew de Brecht Levels of discontinuity, limit-computability, and jump operators , 2014, Logic, Computation, Hierarchies.

[13]  C. Gaßner An introduction to a model of abstract computation: the BSS-RAM model , 2019 .

[14]  Vasco Brattka,et al.  Computability on subsets of metric spaces , 2003, Theor. Comput. Sci..

[15]  Arno Pauly,et al.  Weihrauch Complexity in Computable Analysis , 2017, Theory and Applications of Computability.

[16]  Christine Gaβner The P-DNP problem for infinite Abelian groups , 2001 .

[17]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[18]  Christine Gaßner On NP-Completeness for Linear Machines , 1997, J. Complex..

[19]  Arno Pauly,et al.  Towards Synthetic Descriptive Set Theory: An instantiation with represented spaces , 2013, ArXiv.

[20]  Martin Ziegler Computability and Continuity on the Real Arithmetic Hierarchy and the Power of Type-2 Nondeterminism , 2005, CiE.

[21]  Christine Gaßner,et al.  A Hierarchy below the Halting Problem for Additive Machines , 2008, Theory of Computing Systems.

[22]  Linda Westrick A note on the diamond operator , 2021, Comput..

[23]  Florian Steinberg,et al.  Complexity theory for spaces of integrable functions , 2016, Log. Methods Comput. Sci..

[24]  Armin Hemmerling Computability of String Functions Over Algebraic Structures , 1998, Math. Log. Q..

[25]  Arno Pauly,et al.  Comparing Representations for Function Spaces in Computable Analysis , 2015, Theory of Computing Systems.

[26]  Jouko Väänänen,et al.  Game characterizations of function classes and Weihrauch degrees , 2013 .

[27]  Günter Hotz,et al.  Analytic Machines , 1999, Theor. Comput. Sci..

[28]  Anders C. Hansen,et al.  On the Solvability Complexity Index, the n-pseudospectrum and approximations of spectra of operators , 2011 .

[29]  Martin Ziegler,et al.  Real Analytic Machines and Degrees , 2010, CCA.

[30]  Klaus Meer Counting problems over the reals , 2000, Theor. Comput. Sci..

[31]  Arno Pauly,et al.  A comparison of concepts from computable analysis and effective descriptive set theory , 2014, Mathematical Structures in Computer Science.

[32]  Klaus Weihrauch,et al.  Turing machines on represented sets, a model of computation for Analysis , 2011, Log. Methods Comput. Sci..

[33]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[34]  Klaus Weihrauch,et al.  Computable Analysis , 2005, CiE.

[35]  J. V. Tucker,et al.  Computable functions and semicomputable sets on many-sorted algebras , 2001, Logic in Computer Science.

[36]  Arno Pauly,et al.  Descriptive Set Theory in the Category of Represented Spaces , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.