A Mixed Finite Element Scheme for Optimal Control Problems with Pointwise State Constraints

In this paper, we propose a mixed variational scheme for optimal control problems with point-wise state constraints, the main idea is to reformulate the optimal control problems to a constrained minimization problem involving only the state, which is characterized by a fourth order variational inequality. Then mixed form based on this fourth order variational inequality is formulated and a direct numerical algorithm is proposed without the optimality conditions of underlying optimal control problems. The a priori and a posteriori error estimates are proved for the mixed finite element scheme. Numerical experiments confirm the efficiency of the new strategy.

[1]  Arnd Rösch,et al.  Error estimates for the Lavrentiev regularization of elliptic optimal control problems , 2008 .

[2]  Bin-Xin He Solving a class of linear projection equations , 1994 .

[3]  Wenbin Liu,et al.  A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..

[4]  Ningning Yan,et al.  A posteriori error estimates for optimal control problems governed by parabolic equations , 2003, Numerische Mathematik.

[5]  Karl Kunisch,et al.  Primal-Dual Strategy for State-Constrained Optimal Control Problems , 2002, Comput. Optim. Appl..

[6]  Wei,et al.  An improved error analysis for finite element approximation of bioluminescence tomography * 1) , 2008 .

[7]  MICHAEL HINTERMÜLLER,et al.  PDE-Constrained Optimization Subject to Pointwise Constraints on the Control, the State, and Its Derivative , 2009, SIAM J. Optim..

[8]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[9]  Eduardo Casas Error Estimates for the Numerical Approximation of Semilinear Elliptic Control Problems with Finitely Many State Constraints , 2002 .

[10]  Rolf Rannacher,et al.  Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..

[11]  C. Meyer Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints , 2008 .

[12]  E. Casas Control of an elliptic problem with pointwise state constraints , 1986 .

[13]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[14]  Ningning Yan,et al.  Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes , 2001 .

[15]  K. Kunisch,et al.  Augmented Lagrangian Techniques for Elliptic State Constrained Optimal Control Problems , 1997 .

[16]  W. Hager Review: R. Glowinski, J. L. Lions and R. Trémolières, Numerical analysis of variational inequalities , 1983 .

[17]  Lei,et al.  A POSTERIORI ERROR ESTIMATE OF OPTIMAL CONTROL PROBLEM OF PDE WITH INTEGRAL CONSTRAINT FOR STATE , 2009 .

[18]  Ricardo H. Nochetto,et al.  Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.

[19]  Ningning,et al.  A POSTERIORI ERROR ESTIMATE FOR BOUNDARY CONTROL PROBLEMS GOVERNED BY THE PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 2009 .

[20]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[21]  Wei,et al.  A NEW FINITE ELEMENT APPROXIMATION OF A STATE-CONSTRAINED OPTIMAL CONTROL PROBLEM , 2009 .

[22]  Michael Hinze,et al.  Convergence of a Finite Element Approximation to a State-Constrained Elliptic Control Problem , 2007, SIAM J. Numer. Anal..

[23]  Michael Hintermüller,et al.  Goal-oriented adaptivity in control constrained optimal control of partial differential equations , 2008, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[24]  Ningning Yan,et al.  A posteriori error estimates for control problems governed by nonlinear elliptic equations , 2003 .

[25]  Karl Kunisch,et al.  On the structure of Lagrange multipliers for state-constrained optimal control problems , 2003, Syst. Control. Lett..

[26]  Ningning Yan Finite Element Methods: Superconvergence Analysis and a Posteriori Error Estimation , 2012 .

[27]  Rolf Stenberg,et al.  Finite element methods: superconvergence, post-processing, and a posteriori estimates , 1998 .

[28]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[29]  N. Yan Superconvergence analysis and a posteriori error estimation of a finite element method for an optimal control problem governed by integral equations , 2009 .

[30]  Wenbin Liu,et al.  Adaptive Finite Element Methods for Optimal Control Governed by PDEs: C Series in Information and Computational Science 41 , 2008 .

[31]  Karl Kunisch,et al.  Augemented Lagrangian Techniques for Elliptic State Constrained Optimal Control Problems , 1997 .

[32]  Kazufumi Ito,et al.  Semi-smooth Newton methods for state-constrained optimal control problems , 2003, Syst. Control. Lett..

[33]  Michael Hintermüller,et al.  A level set approach for the solution of a state-constrained optimal control problem , 2004, Numerische Mathematik.

[34]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[35]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[36]  Eduardo Casas,et al.  UNIFORM CONVERGENCE OF THE FEM. APPLICATIONS TO STATE CONSTRAINED CONTROL PROBLEMS , 2002 .

[37]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[38]  Zhaojie,et al.  A Priori and A Posteriori Error Estimates of Streamline Diffusion Finite Element Method for Optimal Control Problem Governed by Convection Dominated Diffusion Equation , 2008 .

[39]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[40]  Karl Kunisch,et al.  Stationary optimal control problems with pointwise state constraints , 2006 .

[41]  Ricardo H. Nochetto,et al.  Positivity preserving finite element approximation , 2002, Math. Comput..