Extrapolation Algorithms for Infrared Divergent Integrals

This paper describes applications of extrapolation for the computation of coefficients in an expansion of infrared divergent integrals. An extrapolation procedure is performed with respect to a parameter introduced by dimensional regularization. While this treats typical IR singularities at the boundaries of the integration domain, special care needs to be taken in cases where the integrand is singular in the interior of the domain as well as on the boundaries. A double extrapolation is devised for a class of massless vertex integrals. Quadruple precision results are presented, demonstrating high accuracy. The computations are supported by the use of general adaptive integration programs from the QUADPACK package, in iterated integrations with highly singular integrand functions.

[1]  J. N. Lyness Applications of extrapolation techniques to multidimensional quadrature of some integrand functions with a singularity , 1976 .

[2]  J. Fujimoto,et al.  Numerical Evaluation of Feynman Integrals by a Direct Computation Method , 2008 .

[3]  David Levin,et al.  Two New Classes of Nonlinear Transformations for Accelerating the Convergence of Infinite Integrals and Series , 1981 .

[4]  Elise de Doncker,et al.  Transformation, Reduction and Extrapolation Techniques for Feynman Loop Integrals , 2010, ICCSA.

[5]  P. Wynn,et al.  On a device for computing the _{}(_{}) tranformation , 1956 .

[6]  Elise de Doncker,et al.  A subroutine package for automatic integration. Part II: special purpose quadrature , 1977 .

[7]  Elise de Doncker,et al.  Numerical Computation of a Non-Planar Two-Loop Vertex Diagram , 2006 .

[8]  T.Kaneko,et al.  Numerical Contour Integration for Loop Integrals , 2005 .

[9]  Avram Sidi,et al.  Convergence properties of some nonlinear sequence transformations , 1979 .

[10]  Avram Sidi,et al.  An algorithm for a generalization of the Richardson extrapolation process , 1987 .

[11]  J. Van Voorst,et al.  Loop integration results using numerical extrapolation for a non-scalar integral , 2004 .

[12]  P. Wynn,et al.  On a Device for Computing the e m (S n ) Transformation , 1956 .

[13]  Claude Brezinski,et al.  A general extrapolation algorithm , 1980 .

[14]  Elise de Doncker,et al.  Computation of loop integrals using extrapolation , 2004 .

[15]  牟田 泰三 Foundations of quantum chromodynamics : an introduction to perturbative methods in gauge theories , 1987 .

[16]  Robert Piessens,et al.  Quadpack: A Subroutine Package for Automatic Integration , 2011 .

[17]  D. Shanks Non‐linear Transformations of Divergent and Slowly Convergent Sequences , 1955 .

[18]  PSIG BIGPSI,et al.  AN ALGORITHM FOR A GENERALIZATION OF THE RICHARDSON EXTRAPOLATION PROCESS , 2022 .

[19]  Y. Kurihara Dimensionally regularized one-loop tensor integralswith massless internal particles , 2005 .

[20]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[21]  Elise de Doncker,et al.  Quadpack computation of Feynman loop integrals , 2012, J. Comput. Sci..