Scalable plasticized polymer electrolytes reinforced with surface-modified sepiolite fillers – A feasibility study in lithium metal polymer batteries
暂无分享,去创建一个
Teófilo Rojo | Michel Armand | Pilar Tiemblo | Juan Miguel López del Amo | M. Armand | J. L. Amo | T. Rojo | N. García | P. Tiemblo | Nuria García | Alberto Mejía | Shanmukaraj Devaraj | Julio Guzmán | S. Devaraj | J. Guzmán | A. Mejía
[1] M. Winter,et al. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. , 2015, Physical chemistry chemical physics : PCCP.
[2] Alberto Mejía Pérez. Nanocompuestos de polióxidos de etileno y sepiolita modificada como base de electrolitos sólidos , 2014 .
[3] T. Zawodzinski,et al. Mechanistic Study of ORR by Cu(II) Based Electrocatalyst Using Simultaneous Electrochemical EPR Spectroscopy , 2014 .
[4] Long-Qing Chen,et al. Understanding and Predicting the Lithium Dendrite Formation in Li-Ion Batteries: Phase Field Model , 2014 .
[5] N. García,et al. Extrusion processed polymer electrolytes based on poly(ethylene oxide) and modified sepiolite nanofibers: Effect of composition and filler nature on rheology and conductivity , 2014 .
[6] N. García,et al. Thermoplastic and solid-like electrolytes with liquid-like ionic conductivity based on poly(ethylene oxide) nanocomposites , 2014 .
[7] N. García,et al. Surface modification of sepiolite nanofibers with PEG based compounds to prepare polymer electrolytes , 2014 .
[8] E. Quartarone,et al. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.
[9] N. Imanishi,et al. Lithium Dendrite Formation in Li/Poly(ethylene oxide)–Lithium Bis(trifluoromethanesulfonyl)imide and N-Methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide/Li Cells , 2010 .
[10] Weishan Li,et al. Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use. , 2009, The journal of physical chemistry. B.
[11] Bruno Scrosati,et al. Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.
[12] B. Lucht,et al. Surface reactions and performance of non-aqueous electrolytes with lithium metal anodes , 2008 .
[13] M. Dissanayake,et al. Effect of plasticizers (EC or PC) on the ionic conductivity and thermal properties of the (PEO)9LiTf: Al2O3 nanocomposite polymer electrolyte system , 2008 .
[14] J. Kerr,et al. New gel polyelectrolytes for rechargeable lithium batteries , 2004 .
[15] Kang Xu,et al. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.
[16] Yong‐Tae Kim,et al. The effect of plasticizers on transport and electrochemical properties of PEO-based electrolytes for lithium rechargeable batteries , 2002 .
[17] M. Ishikawa,et al. Control of lithium metal anode cycleability by electrolyte temperature , 1999 .
[18] M. Dissanayake,et al. Ionic conductivity of plasticized(PEO)-LiCF3SO3 electrolytes , 1998 .
[19] Michel Perrier,et al. Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes , 1994 .
[20] I. Nikolov,et al. Corrosion resistance and catalytic activity of tungsten carbide in phosphoric acid , 1984 .
[21] A. MacDowell,et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.
[22] A. Stephan,et al. Review on gel polymer electrolytes for lithium batteries , 2006 .