Monte Carlo set-membership filtering for nonlinear dynamic systems

When underlying probability density functions of nonlinear dynamic systems are unknown, the filtering problem is known to be a challenging problem. This paper attempts to make progress on this problem by proposing a new class of filtering methods in bounded noise setting via set-membership theory and Monte Carlo (boundary) sampling technique, called Monte Carlo set-membership filter. The set-membership prediction and measurement update are derived by recent convex optimization methods based on S-procedure and Schur complement. To guarantee the on-line usage, the nonlinear dynamics are linearized about the current estimate and the remainder terms are then bounded by an optimization ellipsoid, which can be described as a semi-infinite optimization problem. In general, it is an analytically intractable problem when dynamic systems are nonlinear. However, for a typical nonlinear dynamic system in target tracking, we can analytically derive some regular properties for the remainder. Moreover, based on the remainder properties and the inverse function theorem, the semi-infinite optimization problem can be efficiently solved by Monte Carlo boundary sampling technique. Compared with the particle filter, numerical examples show that when the probability density functions of noises are unknown, the performance of the Monte Carlo set-membership filter is better than that of the particle filter.

[1]  M. Rosenlicht Introduction to Analysis , 1970 .

[2]  Karim Dahia,et al.  A Box Regularized Particle Filter for terrain navigation with highly non-linear measurements* , 2016 .

[3]  Visakan Kadirkamanathan,et al.  Autonomous crowds tracking with box particle filtering and convolution particle filtering , 2016, Autom..

[4]  Uwe D. Hanebeck,et al.  State estimation with sets of densities considering stochastic and systematic errors , 2009, 2009 12th International Conference on Information Fusion.

[5]  Yingting Luo,et al.  Minimizing Euclidian State Estimation Error for Linear Uncertain Dynamic Systems Based on Multisensor and Multi-Algorithm Fusion , 2011, IEEE Transactions on Information Theory.

[6]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[7]  Boris Polyak,et al.  Multi-Input Multi-Output Ellipsoidal State Bounding , 2001 .

[8]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[9]  Fahed Abdallah,et al.  Box particle filtering for nonlinear state estimation using interval analysis , 2008, Autom..

[10]  Fuwen Yang,et al.  Set-Membership Fuzzy Filtering for Nonlinear Discrete-Time Systems , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[11]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[12]  Selin Damla Ahipasaoglu,et al.  A first-order algorithm for the A-optimal experimental design problem: a mathematical programming approach , 2013, Stat. Comput..

[13]  Benoît Chachuat,et al.  Set-Theoretic Approaches in Analysis, Estimation and Control of Nonlinear Systems , 2015 .

[14]  F. Schweppe Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .

[15]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[16]  Giuseppe Carlo Calafiore,et al.  Ellipsoidal bounds for uncertain linear equations and dynamical systems , 2004, Autom..

[17]  Giuseppe Carlo Calafiore,et al.  Reliable localization using set-valued nonlinear filters , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[18]  Eric Walter,et al.  Ellipsoidal parameter or state estimation under model uncertainty , 2004, Autom..

[19]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[20]  Amir Averbuch,et al.  Interacting Multiple Model Methods in Target Tracking: A Survey , 1988 .

[21]  D. Sattinger,et al.  Calculus on Manifolds , 1986 .

[22]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[23]  J. Shamma,et al.  Approximate set-valued observers for nonlinear systems , 1997, IEEE Trans. Autom. Control..

[24]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[25]  D. Bertsekas,et al.  Recursive state estimation for a set-membership description of uncertainty , 1971 .

[26]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[27]  Uwe D. Hanebeck,et al.  Bounding linearization errors with sets of densities in approximate Kalman filtering , 2010, 2010 13th International Conference on Information Fusion.

[28]  J. Munkres,et al.  Calculus on Manifolds , 1965 .

[29]  Luc Jaulin,et al.  Nonlinear bounded-error state estimation of continuous-time systems , 2002, Autom..

[30]  Fahed Abdallah,et al.  An Introduction to Box Particle Filtering [Lecture Notes] , 2013, IEEE Signal Processing Magazine.

[31]  Zidong Wang,et al.  Error-Constrained Filtering for a Class of Nonlinear Time-Varying Delay Systems With Non-Gaussian Noises , 2010, IEEE Transactions on Automatic Control.

[32]  Renato D. C. Monteiro,et al.  Primal-dual first-order methods with $${\mathcal {O}(1/\epsilon)}$$ iteration-complexity for cone programming , 2011, Math. Program..

[33]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[34]  Mark Campbell,et al.  A nonlinear set‐membership filter for on‐line applications , 2003 .

[35]  Darryl Morrell,et al.  An Extended Set-valued Kalman Filter , 2003, ISIPTA.

[36]  Petar M. Djuric,et al.  Gaussian particle filtering , 2003, IEEE Trans. Signal Process..

[37]  Giuseppe Carlo Calafiore,et al.  Robust filtering for discrete-time systems with bounded noise and parametric uncertainty , 2001, IEEE Trans. Autom. Control..

[38]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[39]  Guanghui Lan,et al.  Primal-dual first-order methods with O (1/e) iteration-complexity for cone programming. , 2011 .

[40]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[41]  Lyudmila Mihaylova,et al.  Guaranteed computation of robot trajectories , 2017, Robotics Auton. Syst..

[42]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[43]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[44]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[45]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[46]  Georg Still,et al.  Discretization in semi-infinite programming: the rate of convergence , 2001, Math. Program..

[47]  F. Schweppe Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .

[48]  Rong Chen,et al.  Adaptive joint detection and decoding in flat-fading channels via mixture Kalman filtering , 2000, IEEE Trans. Inf. Theory.