Control of Corticotropin Secretion in Teleost Fishes

corticotropic hormone (ACTH) have shown the presence of such a hormonal activity in the teleost pituitary and have indicated considerable similarity in amino acid composition and sequence between teleost (chum salmon, Onchorynchus keta), elasmobranch (dogfish, Squalus acanthias) and human ACTH (Riniker et al, 1972; Lowry et al, 1974; for a review, see Donaldson, 1981). The structure of salmon ACTH has been determined (Soma et al, 1984) but fish ACTH as an independent hormone has not yet been isolated. In mammals, ACTH is derived from a glycoprotein precursor proopiomelanocortin (POMC; Roberts and Herbert, 1977; Nakanishi et al, 1979). In addition to ACTH, POMC contains lipotropin (LPH), melanotropin (MSH) and endorphin. The POMC molecule is synthesized in corticotrops of the pars distalis and in the melanotrops ofthe neurointermediate lobe. The post-translational processing of this pre? cursor molecule proceeds differently in each lobe of the pituitary. In the corticotrops ofthe pars distalis, POMC is cleaved to produce predominantly ACTH and /3-LPH. In the pars intermedia, ACTH is cleaved further to yield a-MSH and corticotropin-like intermediate lobe peptide (CLIP), whereas 0-LPH is cleaved to yield ^-endorphin and 7-LPH which in some species is processed further to give /3-MSH

[1]  N. Seidah,et al.  Chemistry and biosynthesis of pro-opiomelanocortin , 1981, Molecular and Cellular Biochemistry.

[2]  J. Fryer A light- and electron-microscopic study of goldfish corticotrops following lesions of the nucleus praeopticus , 2004, Cell and Tissue Research.

[3]  H. Fehm,et al.  Effects of neurotransmitters on the release of corticotropin releasing hormone (CRH) by rat hypothalamic tissue in vitro , 2004, Experimental Brain Research.

[4]  T. Veen,et al.  Formaldehyde-induced fluorescence in the telencephalon and diencephalon of the eel (Anguilla anguilla L.) , 1977, Cell and Tissue Research.

[5]  R. J. Purrott,et al.  The control of teleost ACTH cells , 1969, Zeitschrift für vergleichende Physiologie.

[6]  M. Sage Responses to steroids of Xiphophorus ACTH cells in organ culture , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[7]  D. Ko,et al.  Radioimmunoassays for fish tail neuropeptides: I. Development of assay and measurement of immunoreactive urotensin I in Catostomus commersoni brain, pituitary, and plasma. , 1986, Journal of pharmacological methods.

[8]  J. Rivier,et al.  ACTH-releasing activity of urotensin I and ovine CRF: Interactions with arginine vasotocin, isotocin and arginine vasopressin , 1985, Regulatory Peptides.

[9]  G. Soma,et al.  Nucleotide sequence of a cloned cDNA for proopiomeianocortin precursor of chum salmon,Onchorynchus keta , 1984 .

[10]  H. Kawauchi,et al.  Immunocytochemical identification of the proopiocortin-producing cells in the chum salmon pituitary with antisera to endorphin and NH2-terminal peptide of salmon proopiocortin. , 1984, General and comparative endocrinology.

[11]  J. Rivier,et al.  Cortisol inhibits the ACTH-releasing activity of urotensin I, CRF and sauvagine observed with superfused goldfish pituitary cells , 1984, Peptides.

[12]  G. Soma,et al.  Heterogeneity of 3' nontranslated regions in proopiomelanocortin (POMC) precursor mRNA of chum salmon Onchorynchus keta: polymorphism of the gene. , 1984, Biochemical and biophysical research communications.

[13]  P. Lowry Pro-opiocortin: The mutiple adrenal hormone precursor , 1984 .

[14]  H. Kawauchi,et al.  Chemical and immunological characterization of salmon endorphins. , 1984, General and comparative endocrinology.

[15]  K. Lederis The fish urotensins: hypophyseal and peripheral actions in fishes and mammals , 1984 .

[16]  H. Kawauchi,et al.  Chemical and biological characterization of salmon melanocyte-stimulating hormones. , 1984, General and comparative endocrinology.

[17]  J. Rivier,et al.  Urotensin I, a CRF-like neuropeptide, stimulates acth release from the teleost pituitary. , 1983, Endocrinology.

[18]  T. Miyata,et al.  Complete nucleotide sequence of the human corticotropin-beta-lipotropin precursor gene. , 1983, Nucleic acids research.

[19]  J. Sumpter,et al.  Biosynthesis of pro-opiomelanocortin-related peptides in the neurointermediate lobe of the pituitary gland of the rainbow trout (Salmo gairdneri). , 1983, The Journal of endocrinology.

[20]  F. Labrie,et al.  Multiple hormonal control of pars intermedia cell activity. , 1983, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire.

[21]  W. Vale,et al.  In vitro and in vivo ACTH-releasing activity of ovine CRF, sauvagine and urotensin I , 1983, Regulatory Peptides.

[22]  R. Buijs,et al.  The distribution of vasotocin and isotocin in the brain of the rainbow trout , 1982, The Journal of comparative neurology.

[23]  J. Fryer,et al.  Neurohypophysial hormonal control of cortisol secretion in the teleost Carassius auratus. , 1982, General and comparative endocrinology.

[24]  G. Gillies,et al.  Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin , 1982, Nature.

[25]  T. Ichikawa,et al.  Isolation and amino acid sequence of urotensin I, a vasoactive and ACTH-releasing neuropeptide, from the carp (Cyprinus carpio) urophysis , 1982, Peptides.

[26]  L. Maler,et al.  Enhanced uptake of HRP by hypophysiotropic neurons following stress and adrenalectomy , 1982, Brain Research.

[27]  H. Kawauchi,et al.  Occurrence of a new corticotropin-like intermediate lobe peptide in salmon pituitary glands. , 1982, Archives of biochemistry and biophysics.

[28]  E. Donaldson pituitary-interrenal axis as an indicator of stress in fish , 1981 .

[29]  M. Malo-Michele Stimulation des cellules cortico-mélanotropes de la pars intermedia de l'hypophyse de la saupe, Boops salpa L. (Téléostéen marin) soumise à un stress neurogène sonore , 1980 .

[30]  M. Schreibman,et al.  The demonstration of neurophysin and arginine vasotocin by immunocytochemical methods in the brain and pituitary gland of the platyfish, Xiphophorus maculatus. , 1980, General and comparative endocrinology.

[31]  J. Buckingham Corticotrophin releasing factor. , 1979, Pharmacological reviews.

[32]  Baker Bi,et al.  Effect of background colour on plasma cortisol levels in teleosts [proceedings]. , 1979 .

[33]  Stanley N Cohen,et al.  Nucleotide sequence of cloned cDNA for bovine corticotropin-β-lipotropin precursor , 1979, Nature.

[34]  R. Peter,et al.  Hypothalamic control ACTH secretion in goldfish. II. Hypothalamic lesioning studies. , 1977, General and comparative endocrinology.

[35]  R. Peter,et al.  Hypothalamic control of ACTH secretion in goldfish. III. Hypothalamic cortisol implant studies. , 1977, General and comparative endocrinology.

[36]  D. Fellmann,et al.  Identification cyto-immunologique de deux catégories cellulaires dans le lobe intermédiaire de l'hypophyse des salmonidés; présence d'ACTH et d'alpha-MSH , 1976 .

[37]  C. McMartin,et al.  The isolation and amino acid sequence of an adrenocorticotrophin from the pars distalis and a corticotrophin-like intermediate-lobe peptide from the neurointermediate lobe of the pituitary of the dogfish Squalus acanthias. , 1974, The Biochemical journal.

[38]  R. L. Holmes,et al.  The pituitary gland : a comparative account , 1974 .

[39]  E. F. Hawkins,et al.  Current Knowledge of the Mechanisms Involved in the Control of ACTH Secretion in Teleost Fishes , 1973 .

[40]  H. Zuber,et al.  Revised amino-acid sequences for porcine and human adrenocorticotrophic hormone. , 1972, Nature: New biology.

[41]  H. Bern,et al.  A reference preparation for the study of active substances in the caudal neurosecretory system of teleosts. , 1969, The Journal of endocrinology.

[42]  G. Harris,et al.  The pituitary gland , 1966 .