Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy

Water ice beneath the surface of Ceres The dwarf planet Ceres in the inner solar system is thought to have a crust made of a mixture of rock and ice. Prettyman et al. used neutron and gamma-ray spectroscopy from the Dawn spacecraft to peer below Ceres' surface and map the subsurface composition. They found evidence for water ice across the dwarf planet, with water making up a larger fraction of the material near the poles than around the equator. Together with their measurements of other elements, these results aid our understanding of Ceres' composition and constrain models of its formation. Science, this issue p. 55 Water ice is present beneath the surface of the dwarf planet Ceres, particularly near the poles. The surface elemental composition of dwarf planet Ceres constrains its regolith ice content, aqueous alteration processes, and interior evolution. Using nuclear spectroscopy data acquired by NASA’s Dawn mission, we determined the concentrations of elemental hydrogen, iron, and potassium on Ceres. The data show that surface materials were processed by the action of water within the interior. The non-icy portion of Ceres’ carbon-bearing regolith contains similar amounts of hydrogen to those present in aqueously altered carbonaceous chondrites; however, the concentration of iron on Ceres is lower than in the aforementioned chondrites. This allows for the possibility that Ceres experienced modest ice-rock fractionation, resulting in differences between surface and bulk composition. At mid-to-high latitudes, the regolith contains high concentrations of hydrogen, consistent with broad expanses of water ice, confirming theoretical predictions that ice can survive for billions of years just beneath the surface.

[1]  E. Fermi Nuclear Physics : a course given by Enrico Fermi at the University of Chicago , 1950 .

[2]  P. O'Neill,et al.  Badhwar–O'Neill 2010 Galactic Cosmic Ray Flux Model—Revised , 2010, IEEE Transactions on Nuclear Science.

[3]  O. Aharonson,et al.  Thermal stability of ice on Ceres with rough topography , 2015 .

[4]  D. Mittlefehldt,et al.  The quest for regolithic howardites. Part 1: Two trends uncovered using noble gases , 2013 .

[5]  R. Bowden,et al.  The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets , 2012, Science.

[6]  John S. Hendricks,et al.  Dawn’s Gamma Ray and Neutron Detector , 2011 .

[7]  R. Mugnuolo,et al.  Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres , 2016, Nature.

[8]  F. G. Carrozzo,et al.  Distribution of phyllosilicates on the surface of Ceres , 2016, Science.

[9]  Richard D. Starr,et al.  Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars , 2007 .

[10]  R. Jaumann,et al.  Dawn arrives at Ceres: Exploration of a small, volatile-rich world , 2016, Science.

[11]  C. Russell,et al.  The missing large impact craters on Ceres , 2016, Nature Communications.

[12]  R. Reedy,et al.  Constraints on Vesta's elemental composition: Fast neutron measurements by Dawn's gamma ray and neutron detector , 2013, Meteoritics & planetary science.

[13]  M. Zuber,et al.  CO2 Snow Depth and Subsurface Water-Ice Abundance in the Northern Hemisphere of Mars , 2003, Science.

[14]  Thomas H. Prettyman,et al.  Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector , 2006 .

[15]  R. Bowden,et al.  Carbonate abundances and isotopic compositions in chondrites , 2013 .

[16]  H. Wiik REGULAR DISCONTINUITIES IN THE COMPOSITION OF METEORITES. , 1969 .

[17]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[18]  S. Desch,et al.  Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy ice mantle , 2015 .

[19]  O. Forni,et al.  Distribution of iron on Vesta , 2013 .

[20]  K. Johnson An Update. , 1984, Journal of food protection.

[21]  S. Richardson,et al.  The composition of carbonaceous chondrite matrix , 1977 .

[22]  R. Jaumann,et al.  Vesta’s Shape and Morphology , 2012, Science.

[23]  Peter R. Buseck,et al.  Matrix mineralogy of the Orgueil CI carbonaceous chondrite , 1988 .

[24]  A. Zent,et al.  H2O Adsorption on Smectites: Application to the Diurnal Variation of H2O in the Martian Atmosphere , 2013 .

[25]  A. Brearley Nebular Versus Parent Body Processing , 2014 .

[26]  F. Vilas,et al.  The UV signature of carbon in the solar system , 2016 .

[27]  Alan B. Binder,et al.  Chemical information content of lunar thermal and epithermal neutrons , 2000 .

[28]  R. Coker,et al.  Why aqueous alteration in asteroids was isochemical: High porosity ≠ high permeability , 2009 .

[29]  T. McCord,et al.  Ceres’ evolution and present state constrained by shape data , 2010 .

[30]  R. Clayton,et al.  Potassium isotope cosmochemistry: Genetic implications of volatile element depletion , 1995 .

[31]  A. Rubin Mineralogy of meteorite groups , 1997 .

[32]  A. V. Masket Solid Angle Subtended by a Circular Disk , 1959 .

[33]  T. Titus Ceres: Predictions for near‐surface water ice stability and implications for plume generating processes , 2015 .

[34]  P. Schultz,et al.  Predictions for impactor contamination on Ceres based on hypervelocity impact experiments , 2015 .

[35]  Carolyn M. Ernst,et al.  Remote sensing evidence for an ancient carbon-bearing crust on Mercury , 2016 .

[36]  Daniel T. Britt,et al.  Stony meteorite porosities and densities: A review of the data through 2001 , 2003 .

[37]  S. Derenne,et al.  Model of molecular structure of the insoluble organic matter isolated from Murchison meteorite , 2010 .

[38]  Alan E. Rubin,et al.  Progressive aqueous alteration of CM carbonaceous chondrites , 2007 .

[39]  N. Schörghofer Planetary-Code-Collection: Thermal and Ice Evolution Models for Planetary Surfaces 1.1.1 , 2016 .

[40]  H. McSween,et al.  Using HED meteorites to interpret neutron and gamma‐ray data from asteroid 4 Vesta , 2015 .

[41]  B. Schmitt,et al.  Bidirectional reflectance spectroscopy of carbonaceous chondrites: Implications for water quantification and primary composition , 2016 .

[42]  David Bazell,et al.  Evidence for Water Ice Near Mercury’s North Pole from MESSENGER Neutron Spectrometer Measurements , 2013, Science.

[43]  D. Mittlefehldt Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites , 2015 .

[44]  David J. Williams,et al.  The Geologically Recent Giant Impact Basins at Vesta’s South Pole , 2012, Science.

[45]  William V. Boynton,et al.  Global distribution of near-surface hydrogen on Mars , 2004 .

[46]  T. McCord,et al.  Thermal and radiation stability of the hydrated salt minerals epsomite, mirabilite, and natron under Europa environmental conditions , 2001 .

[47]  H. Palme,et al.  The solar system abundances of phosphorus and titanium and the nebular volatility of phosphorus , 2001 .

[48]  Thomas H. Prettyman,et al.  Latitude variation of the subsurface lunar temperature: Lunar Prospector thermal neutrons , 2001 .

[49]  H.W. Kraner,et al.  Radiation detection and measurement , 1981, Proceedings of the IEEE.

[50]  F. Fanale,et al.  The water regime of asteroid (1) Ceres , 1989 .

[51]  L. Nittler,et al.  Constraints on the abundance of carbon in near-surface materials on Mercury: Results from the MESSENGER Gamma-Ray Spectrometer , 2015 .

[52]  Sara S. Russell,et al.  Characterising the CI and CI-like carbonaceous chondrites using thermogravimetric analysis and infrared spectroscopy , 2015, Earth, Planets and Space.

[53]  H. B. Wiik,et al.  The chemical composition of some stony meteorites , 1956 .

[54]  E. Jarosewich Chemical analyses of meteorites at the Smithsonian Institution: An update , 2006 .

[55]  C. Russell,et al.  A partially differentiated interior for (1) Ceres deduced from its gravity field and shape , 2016, Nature.

[56]  A. Brearley 1.9 – Nebular Versus Parent Body Processing , 2014 .

[57]  D. Teyssier,et al.  Localized sources of water vapour on the dwarf planet (1) Ceres , 2014, Nature.

[58]  R. Gardner,et al.  On the solid angle subtended by a circular disc , 1971 .

[59]  F. G. Carrozzo,et al.  Detection of local H2O exposed at the surface of Ceres , 2016, Science.

[60]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[61]  Jochen Kissel,et al.  Aspects of the major element composition of Halley's dust , 1988, Nature.

[62]  R. Reedy Planetary gamma-ray spectroscopy , 1978 .

[63]  R. Jaumann,et al.  Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres , 2015, Nature.

[64]  Richard D. Starr,et al.  Composition and structure of the Martian surface at high southern latitudes from neutron spectroscopy , 2004 .

[65]  B. Schmitt,et al.  The abundance and stability of “water” in type 1 and 2 carbonaceous chondrites (CI, CM and CR) , 2014 .

[66]  R. Bowden,et al.  The classification of CM and CR chondrites using bulk H, C and N abundances and isotopic compositions , 2013 .

[67]  A. Rivkin,et al.  The Surface Composition of Ceres , 2011 .

[68]  L. B. Ronca,et al.  Space weathering of lunar and asteroidal surfaces , 1967 .

[69]  D. Mittlefehldt,et al.  The quest for regolithic howardites. Part 2: Surface origins highlighted by noble gases , 2014 .

[70]  Olivier Forni,et al.  Elemental Mapping by Dawn Reveals Exogenic H in Vesta’s Regolith , 2012, Science.

[71]  N. Schorghofer The Lifetime of Ice on Main Belt Asteroids , 2008 .

[72]  S. Maurice,et al.  Mars Odyssey neutron data: 2. Search for buried excess water ice deposits at nonpolar latitudes on Mars , 2011 .

[73]  Alessandro Frigeri,et al.  DETECTION OF WIDESPREAD HYDRATED MATERIALS ON VESTA BY THE VIR IMAGING SPECTROMETER ON BOARD THE DAWN MISSION , 2012 .

[74]  G. Schubert,et al.  Conditions for pore water convection within carbonaceous chondrite parent bodies – implications for planetesimal size and heat production , 2003 .

[75]  Thomas H. Prettyman,et al.  Gamma-Ray, Neutron, and Alpha-Particle Spectrometers for the Lunar Prospector mission , 2004 .

[76]  R. Reedy,et al.  Neutron absorption constraints on the composition of 4 Vesta , 2013 .

[77]  C. Sotin,et al.  Ceres: Evolution and current state , 2005 .

[78]  N. Schorghofer Predictions of depth-to-ice on asteroids based on an asynchronous model of temperature, impact stirring, and ice loss , 2016 .

[79]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[80]  H. McSween,et al.  Grosvenor Mountains 95 howardite pairing group: Insights into the surface regolith of asteroid 4 Vesta , 2016 .

[81]  W. Feldman,et al.  MCNPX benchmark for cosmic ray interactions with the Moon , 2006 .

[82]  R. Reedy,et al.  Concentrations of potassium and thorium within Vesta’s regolith , 2015 .