Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy
暂无分享,去创建一个
H. Y. McSween | T. H. Prettyman | C. T. Russell | N. Yamashita | S. P. Joy | C. A. Raymond | M. D. Rayman | O. Forni | C. A. Polanskey | E. Ammannito | D. J. Lawrence | B. L. Ehlmann | C. Russell | O. Forni | B. Ehlmann | H. McSween | W. Feldman | D. Lawrence | T. Prettyman | S. Marchi | J. Castillo‐Rogez | E. Ammannito | C. Raymond | M. Rayman | N. Schorghofer | M. Toplis | S. Joy | C. Polanskey | H. Sizemore | W. C. Feldman | S. Marchi | M. J. Toplis | N. Schörghofer | J. Castillo‐Rogez | H. G. Sizemore | C. Russell | N. Yamashita | N. Schörghofer
[1] E. Fermi. Nuclear Physics : a course given by Enrico Fermi at the University of Chicago , 1950 .
[2] P. O'Neill,et al. Badhwar–O'Neill 2010 Galactic Cosmic Ray Flux Model—Revised , 2010, IEEE Transactions on Nuclear Science.
[3] O. Aharonson,et al. Thermal stability of ice on Ceres with rough topography , 2015 .
[4] D. Mittlefehldt,et al. The quest for regolithic howardites. Part 1: Two trends uncovered using noble gases , 2013 .
[5] R. Bowden,et al. The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets , 2012, Science.
[6] John S. Hendricks,et al. Dawn’s Gamma Ray and Neutron Detector , 2011 .
[7] R. Mugnuolo,et al. Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres , 2016, Nature.
[8] F. G. Carrozzo,et al. Distribution of phyllosilicates on the surface of Ceres , 2016, Science.
[9] Richard D. Starr,et al. Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars , 2007 .
[10] R. Jaumann,et al. Dawn arrives at Ceres: Exploration of a small, volatile-rich world , 2016, Science.
[11] C. Russell,et al. The missing large impact craters on Ceres , 2016, Nature Communications.
[12] R. Reedy,et al. Constraints on Vesta's elemental composition: Fast neutron measurements by Dawn's gamma ray and neutron detector , 2013, Meteoritics & planetary science.
[13] M. Zuber,et al. CO2 Snow Depth and Subsurface Water-Ice Abundance in the Northern Hemisphere of Mars , 2003, Science.
[14] Thomas H. Prettyman,et al. Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector , 2006 .
[15] R. Bowden,et al. Carbonate abundances and isotopic compositions in chondrites , 2013 .
[16] H. Wiik. REGULAR DISCONTINUITIES IN THE COMPOSITION OF METEORITES. , 1969 .
[17] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[18] S. Desch,et al. Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy ice mantle , 2015 .
[19] O. Forni,et al. Distribution of iron on Vesta , 2013 .
[20] K. Johnson. An Update. , 1984, Journal of food protection.
[21] S. Richardson,et al. The composition of carbonaceous chondrite matrix , 1977 .
[22] R. Jaumann,et al. Vesta’s Shape and Morphology , 2012, Science.
[23] Peter R. Buseck,et al. Matrix mineralogy of the Orgueil CI carbonaceous chondrite , 1988 .
[24] A. Zent,et al. H2O Adsorption on Smectites: Application to the Diurnal Variation of H2O in the Martian Atmosphere , 2013 .
[25] A. Brearley. Nebular Versus Parent Body Processing , 2014 .
[26] F. Vilas,et al. The UV signature of carbon in the solar system , 2016 .
[27] Alan B. Binder,et al. Chemical information content of lunar thermal and epithermal neutrons , 2000 .
[28] R. Coker,et al. Why aqueous alteration in asteroids was isochemical: High porosity ≠ high permeability , 2009 .
[29] T. McCord,et al. Ceres’ evolution and present state constrained by shape data , 2010 .
[30] R. Clayton,et al. Potassium isotope cosmochemistry: Genetic implications of volatile element depletion , 1995 .
[31] A. Rubin. Mineralogy of meteorite groups , 1997 .
[32] A. V. Masket. Solid Angle Subtended by a Circular Disk , 1959 .
[33] T. Titus. Ceres: Predictions for near‐surface water ice stability and implications for plume generating processes , 2015 .
[34] P. Schultz,et al. Predictions for impactor contamination on Ceres based on hypervelocity impact experiments , 2015 .
[35] Carolyn M. Ernst,et al. Remote sensing evidence for an ancient carbon-bearing crust on Mercury , 2016 .
[36] Daniel T. Britt,et al. Stony meteorite porosities and densities: A review of the data through 2001 , 2003 .
[37] S. Derenne,et al. Model of molecular structure of the insoluble organic matter isolated from Murchison meteorite , 2010 .
[38] Alan E. Rubin,et al. Progressive aqueous alteration of CM carbonaceous chondrites , 2007 .
[39] N. Schörghofer. Planetary-Code-Collection: Thermal and Ice Evolution Models for Planetary Surfaces 1.1.1 , 2016 .
[40] H. McSween,et al. Using HED meteorites to interpret neutron and gamma‐ray data from asteroid 4 Vesta , 2015 .
[41] B. Schmitt,et al. Bidirectional reflectance spectroscopy of carbonaceous chondrites: Implications for water quantification and primary composition , 2016 .
[42] David Bazell,et al. Evidence for Water Ice Near Mercury’s North Pole from MESSENGER Neutron Spectrometer Measurements , 2013, Science.
[43] D. Mittlefehldt. Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites , 2015 .
[44] David J. Williams,et al. The Geologically Recent Giant Impact Basins at Vesta’s South Pole , 2012, Science.
[45] William V. Boynton,et al. Global distribution of near-surface hydrogen on Mars , 2004 .
[46] T. McCord,et al. Thermal and radiation stability of the hydrated salt minerals epsomite, mirabilite, and natron under Europa environmental conditions , 2001 .
[47] H. Palme,et al. The solar system abundances of phosphorus and titanium and the nebular volatility of phosphorus , 2001 .
[48] Thomas H. Prettyman,et al. Latitude variation of the subsurface lunar temperature: Lunar Prospector thermal neutrons , 2001 .
[49] H.W. Kraner,et al. Radiation detection and measurement , 1981, Proceedings of the IEEE.
[50] F. Fanale,et al. The water regime of asteroid (1) Ceres , 1989 .
[51] L. Nittler,et al. Constraints on the abundance of carbon in near-surface materials on Mercury: Results from the MESSENGER Gamma-Ray Spectrometer , 2015 .
[52] Sara S. Russell,et al. Characterising the CI and CI-like carbonaceous chondrites using thermogravimetric analysis and infrared spectroscopy , 2015, Earth, Planets and Space.
[53] H. B. Wiik,et al. The chemical composition of some stony meteorites , 1956 .
[54] E. Jarosewich. Chemical analyses of meteorites at the Smithsonian Institution: An update , 2006 .
[55] C. Russell,et al. A partially differentiated interior for (1) Ceres deduced from its gravity field and shape , 2016, Nature.
[56] A. Brearley. 1.9 – Nebular Versus Parent Body Processing , 2014 .
[57] D. Teyssier,et al. Localized sources of water vapour on the dwarf planet (1) Ceres , 2014, Nature.
[58] R. Gardner,et al. On the solid angle subtended by a circular disc , 1971 .
[59] F. G. Carrozzo,et al. Detection of local H2O exposed at the surface of Ceres , 2016, Science.
[60] P. Steerenberg,et al. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.
[61] Jochen Kissel,et al. Aspects of the major element composition of Halley's dust , 1988, Nature.
[62] R. Reedy. Planetary gamma-ray spectroscopy , 1978 .
[63] R. Jaumann,et al. Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres , 2015, Nature.
[64] Richard D. Starr,et al. Composition and structure of the Martian surface at high southern latitudes from neutron spectroscopy , 2004 .
[65] B. Schmitt,et al. The abundance and stability of “water” in type 1 and 2 carbonaceous chondrites (CI, CM and CR) , 2014 .
[66] R. Bowden,et al. The classification of CM and CR chondrites using bulk H, C and N abundances and isotopic compositions , 2013 .
[67] A. Rivkin,et al. The Surface Composition of Ceres , 2011 .
[68] L. B. Ronca,et al. Space weathering of lunar and asteroidal surfaces , 1967 .
[69] D. Mittlefehldt,et al. The quest for regolithic howardites. Part 2: Surface origins highlighted by noble gases , 2014 .
[70] Olivier Forni,et al. Elemental Mapping by Dawn Reveals Exogenic H in Vesta’s Regolith , 2012, Science.
[71] N. Schorghofer. The Lifetime of Ice on Main Belt Asteroids , 2008 .
[72] S. Maurice,et al. Mars Odyssey neutron data: 2. Search for buried excess water ice deposits at nonpolar latitudes on Mars , 2011 .
[73] Alessandro Frigeri,et al. DETECTION OF WIDESPREAD HYDRATED MATERIALS ON VESTA BY THE VIR IMAGING SPECTROMETER ON BOARD THE DAWN MISSION , 2012 .
[74] G. Schubert,et al. Conditions for pore water convection within carbonaceous chondrite parent bodies – implications for planetesimal size and heat production , 2003 .
[75] Thomas H. Prettyman,et al. Gamma-Ray, Neutron, and Alpha-Particle Spectrometers for the Lunar Prospector mission , 2004 .
[76] R. Reedy,et al. Neutron absorption constraints on the composition of 4 Vesta , 2013 .
[77] C. Sotin,et al. Ceres: Evolution and current state , 2005 .
[78] N. Schorghofer. Predictions of depth-to-ice on asteroids based on an asynchronous model of temperature, impact stirring, and ice loss , 2016 .
[79] E. Jarosewich,et al. Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .
[80] H. McSween,et al. Grosvenor Mountains 95 howardite pairing group: Insights into the surface regolith of asteroid 4 Vesta , 2016 .
[81] W. Feldman,et al. MCNPX benchmark for cosmic ray interactions with the Moon , 2006 .
[82] R. Reedy,et al. Concentrations of potassium and thorium within Vesta’s regolith , 2015 .