ON FINITE DIFFERENCE SCHEMES FOR THE 3-D WAVE EQUATION USING NON-CARTESIAN GRIDS

In this paper, we investigate finite difference schemes for the 3-D wave equation using 27-point stencils on the cubic lattice, a 13-point stencil on the face-centered cubic (FCC) lattice, and a 9-point stencil on the body-centered cubic (BCC) lattice. The tiling of the wavenumber space for nonCartesian grids is considered in order to analyse numerical dispersion. Schemes are compared for computational efficiency in terms of minimising numerical wave speed error. It is shown that the 13-point scheme on the FCC lattice is more computationally efficient than 27-point schemes on the cubic lattice when less than 8% error in the wave speed is desired.

[1]  Vesa Välimäki,et al.  Fifty Years of Artificial Reverberation , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[2]  David M. Howard,et al.  On the computational efficiency of different waveguide mesh topologies for room acoustic simulation , 2005, IEEE Transactions on Speech and Audio Processing.

[3]  L. Kantorovich,et al.  Approximate methods of higher analysis , 1960 .

[4]  P. Brandimarte Finite Difference Methods for Partial Differential Equations , 2006 .

[5]  Julius O. Smith,et al.  Finite difference schemes and digital waveguide networks for the wave equation: stability, passivity, and numerical dispersion , 2003, IEEE Trans. Speech Audio Process..

[6]  S.A. Van Duyne,et al.  The tetrahedral digital waveguide mesh , 1995, Proceedings of 1995 Workshop on Applications of Signal Processing to Audio and Accoustics.

[7]  Stefan Bilbao,et al.  Modeling of Complex Geometries and Boundary Conditions in Finite Difference/Finite Volume Time Domain Room Acoustics Simulation , 2013, IEEE Transactions on Audio, Speech, and Language Processing.

[8]  Tapio Takala,et al.  Simulation of Room Acoustics with a 3-D Finite Difference Mesh , 1994, ICMC.

[9]  Xiao Fei,et al.  The construction of low-dispersive FDTD on hexagon , 2005, IEEE Transactions on Antennas and Propagation.

[10]  Stefan Bilbao,et al.  Hexagonal vs. rectilinear grids for explicit finite difference schemes for the two-dimensional wave equation , 2013 .

[11]  Tapio Lokki,et al.  The perceptual effects of dispersion error on room acoustic model auralization , 2011 .

[12]  Brian Hamilton,et al.  ROOM ACOUSTICS MODELLING USING GPU-ACCELERATED FINITE DIFFERENCE AND FINITE VOLUME METHODS ON A FACE-CENTERED CUBIC GRID , 2013 .

[13]  Maarten van Walstijn,et al.  Room Acoustics Simulation Using 3-D Compact Explicit FDTD Schemes , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[14]  Marc-Laurent Aird Musical instrument modelling using digital waveguides , 2002 .

[15]  Maic Masuch,et al.  Waveguide-based Room Acoustics through Graphics Hardware , 2006, ICMC.

[16]  Joel Augustus Laird,et al.  The physical modelling of drums using digital waveguides , 2001 .

[17]  Lauri Savioja,et al.  REAL-TIME 3D FINITE-DIFFERENCE TIME-DOMAIN SIMULATION OF LOW- AND MID-FREQUENCY ROOM ACOUSTICS , 2010 .

[18]  Vesa Välimäki,et al.  Interpolated rectangular 3-D digital waveguide mesh algorithms with frequency warping , 2003, IEEE Trans. Speech Audio Process..

[19]  D. Murphy,et al.  Acoustic Modeling Using the Digital Waveguide Mesh , 2007, IEEE Signal Processing Magazine.

[20]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[21]  Craig J. Webb,et al.  Large-scale Virtual Acoustics Simulation at Audio Rates Using Three Dimensional Finite Difference Time Domain and Multiple GPUs , 2013 .

[22]  David Middleton,et al.  Sampling and Reconstruction of Wave-Number-Limited Functions in N-Dimensional Euclidean Spaces , 1962, Inf. Control..

[23]  Antoine Chaigne,et al.  TIME-DOMAIN MODELING AND NUMERICAL SIMULATION OF A KETTLEDRUM , 1999 .

[24]  Klaus Mueller,et al.  Efficient LBM Visual Simulation on Face-Centered Cubic Lattices , 2009, IEEE Transactions on Visualization and Computer Graphics.

[25]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[26]  Julius O. Smith,et al.  Physical Modeling with the 2-D Digital Waveguide Mesh , 1993, ICMC.

[27]  J. Neumann,et al.  Numerical Integration of the Barotropic Vorticity Equation , 1950 .

[28]  M. van Walstijn,et al.  On the numerical solution of the 2d wave equation with compact fdtd schemes , 2008 .

[29]  Stefan Bilbao Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics , 2009 .

[30]  Stefan Bilbao,et al.  Wave and scattering methods for the numerical integration of partial differential equations , 2001 .

[31]  Michael P. Lamoureux,et al.  An FDTD scheme on a face-centered-cubic (FCC) grid for the solution of the wave equation , 2011, J. Comput. Phys..

[32]  Yen Liu,et al.  Fourier Analysis of Numerical Algorithms for the Maxwell Equations , 1993 .