Conversion of energy in halobacteria: ATP synthesis and phototaxis

Abstract Halobacteria are aerobic chemo-organotroph archaea that grow optimally between pH 8 and 9 using a wide range of carbon sources. These archaea have developed alternative processes of energy provision for conditions of high cell densities and the reduced solubility of molecular oxygen in concentrated brines. The halobacteria can switch to anaerobic metabolism by using an alternative final acceptor in the respiratory chain or by fermentation, or alternatively, they can employ photophosphorylation. Light energy is converted by several retinal-containing membrane proteins that, in addition to generating a proton gradient across the cell membrane, also make phototaxis possible in order to approach optimal light conditions. The structural and functional features of ATP synthesis in archaea are discussed, and similarities to F-ATPases (functional aspects) or vacuolar ATPases (structural aspects) are presented.

[1]  Structure-function studies on bacteriorhodopsin. II. Improved expression of the bacterio-opsin gene in Escherichia coli. , 1987, The Journal of biological chemistry.

[2]  S. Bickel-Sandkötter,et al.  Properties of a Dissimilatory Nitrate Reductase from the Halophilic Archaeon Haloferax volcanii , 1995 .

[3]  Bophop,et al.  Bacterioopsin , Haloopsin , and Sensory Opsin I of the Halobacterial Isolate Halobacterium sp . Strain SG 1 : Three New Members of a Growing Family , 2022 .

[4]  B. Javor Growth Potential of Halophilic Bacteria Isolated from Solar Salt Environments: Carbon Sources and Salt Requirements , 1984, Applied and environmental microbiology.

[5]  Y. Mukohata,et al.  The ATP synthase in Extreme Halophilic Archaebacteria and Its Relatives , 1991 .

[6]  K. Steinert,et al.  Isolation, Characterization, and Substrate Specificity of the Plasma Membrane ATPase of the Halophilic Archaeon Haloferax volcanii , 1996 .

[7]  C. H. Brito Cruz,et al.  Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. , 1988, Science.

[8]  A. Oren The microbial ecology of the dead sea , 1988 .

[9]  E. Bamberg,et al.  A defective proton pump, point‐mutated bacteriorhodopsin Asp96‐‐‐‐Asn is fully reactivated by azide. , 1989, The EMBO journal.

[10]  A. Oren The ecology of the extremely halophilic archaea , 1994 .

[11]  E. Bamberg,et al.  A unifying concept for ion translocation by retinal proteins , 1992, Journal of bioenergetics and biomembranes.

[12]  A H Xie,et al.  Quantum efficiencies of bacteriorhodopsin photochemical reactions. , 1990, Biophysical journal.

[13]  P. Tavan,et al.  The effect of protonation and electrical interactions on the stereochemistry of retinal schiff bases. , 1985, Biophysical journal.

[14]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[15]  A. Ruepp,et al.  Catabolic ornithine transcarbamylase of Halobacterium halobium (salinarium): purification, characterization, sequence determination, and evolution , 1995, Journal of bacteriology.

[16]  P. Hildebrandt,et al.  Role of water in bacteriorhodopsin's chromophore: resonance Raman study , 1984 .

[17]  D. Oesterhelt,et al.  Experimental evidence for hydrogen-bonded network proton transfer in bacteriorhodopsin shown by Fourier-transform infrared spectroscopy using azide as catalyst. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[18]  S. Ferguson,et al.  The respiratory nitrate reductase from Paracoccus denitrificans , 1986 .

[19]  M. Mevarech,et al.  Induction of a dissimilatory reduction pathway of nitrate in Halobacterium of the Dead Sea. A possible role for the 2 Fe-ferredoxin isolated from this organism. , 1978, Archives of biochemistry and biophysics.

[20]  R. Rando,et al.  Deprotonation of the Schiff base of bacteriorhodopsin is obligate in light-induced proton pumping. , 1987, Biochemistry.

[21]  M. Simon,et al.  Signal transduction pathways involving protein phosphorylation in prokaryotes. , 1991, Annual review of biochemistry.

[22]  D. Oesterhelt,et al.  Rotation and switching of the flagellar motor assembly in Halobacterium halobium , 1991, Journal of bacteriology.

[23]  Dieter Oesterhelt,et al.  The quantum yield of bacteriorhodopsin , 1990 .

[24]  J. Lanyi,et al.  Kinetic and spectroscopic evidence for an irreversible step between deprotonation and reprotonation of the Schiff base in the bacteriorhodopsin photocycle. , 1991, Biochemistry.

[25]  D. Oesterhelt,et al.  Potassium uniport and ATP synthesis in Halobacterium halobium. , 1978, European journal of biochemistry.

[26]  H. Khorana,et al.  Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[27]  F. Muriana,et al.  Purification and Characterization of Nitrate Reductase from the Halophile Archaebacterium Haloferax mediterranei , 1992 .

[28]  J. Lanyi,et al.  Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin. , 1993, Biochimica et biophysica acta.

[29]  D. Oesterhelt,et al.  Rhodopsin-like protein from the purple membrane of Halobacterium halobium. , 1971, Nature: New biology.

[30]  Y. Mukohata,et al.  HALOBACTERIAL A-ATP SYNTHASE IN RELATION TO V-ATPase. , 1992, The Journal of experimental biology.

[31]  S. Bickel-Sandkötter Structure of the active metal-adenosine 5′-triphosphate chelate complex used by light-triggered chloroplast ATPase , 1985 .

[32]  J. Lanyi,et al.  Low-temperature photoreactions of halorhodopsin. 1. Detection of conformational substates of the chromoprotein. , 1989, Biochemistry.

[33]  Silvia E. Braslavsky,et al.  TIME-RESOLVED VOLUME CHANGES DURING THE BACTERIORHODOPSIN PHOTOCYCLE : A PHOTOTHERMAL BEAM DEFLECTION STUDY , 1995 .

[34]  B. Hess,et al.  Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium. , 1973, European journal of biochemistry.

[35]  Barry Honig,et al.  An external point-charge model for bacteriorhodopsin to account for its purple color , 1980 .

[36]  B. Hess,et al.  Simultaneous monitoring of light-induced changes in protein side-group protonation, chromophore isomerization, and backbone motion of bacteriorhodopsin by time-resolved Fourier-transform infrared spectroscopy. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[37]  G. Mille,et al.  Biodegradation of hydrocarbons by an extremely halophilic archaebacterium , 1990 .

[38]  L. Hochstein,et al.  Nucleotide-protectable labeling of sulfhydryl groups in subunit I of the ATPase from Halobacterium saccharovorum. , 1992, Archives of biochemistry and biophysics.

[39]  D. Oesterhelt Bacteriorhodopsin als Beispiel einer lichtgetriebenen Protonenpumpe , 1976 .

[40]  J. Ingraham,et al.  Properties of dissimilatory nitrate reductase purified from the denitrifier Pseudomonas aeruginosa , 1982, Journal of bacteriology.

[41]  L. Hochstein,et al.  Dicyclohexylcarbodiimide-sensitive ATPase in Halobacterium saccharovorum. , 1985, Archives of biochemistry and biophysics.

[42]  J. Lanyi,et al.  An efficient system for the synthesis of bacteriorhodopsin in Halobacterium halobium. , 1990, Gene.

[43]  D. Oesterhelt,et al.  The flagellar bundle of Halobacterium salinarium is inserted into a distinct polar cap structure , 1994, Journal of bacteriology.

[44]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Y. Mukohata,et al.  The ATP synthase of Halobacterium salinarium (halobium) is an archaebacterial type as revealed from the amino acid sequences of its two major subunits. , 1991, Archives of biochemistry and biophysics.

[46]  D. Oesterhelt The purple membrane of Halobacterium halobium: a new system for light energy conversion. , 1975, Ciba Foundation symposium.

[47]  D. Oesterhelt,et al.  Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient. , 1980, Biochemistry.

[48]  D. Oesterhelt,et al.  Signal Transduction in Halobacteria , 1989 .

[49]  P. Tavan,et al.  A mechanism for the light-driven proton pump of Halobacterium halobium , 1978, Nature.

[50]  C. Englert,et al.  Three different but related gene clusters encoding gas vesicles in halophilic archaea. , 1992, Journal of molecular biology.

[51]  Sadashiva S. Karnik,et al.  Structure-Function Studies on Bacteriorhodopsin , 1987 .

[52]  W. Gärtner,et al.  A possible protein motion during the bacteriorhodopsin photocycle detected by combined photothermal beam deflection and optical detection , 1994 .

[53]  J. Spudich,et al.  Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Spudich Protein-protein interaction converts a proton pump into a sensory receptor , 1994, Cell.

[55]  Normansell De,et al.  Purification and properties of nitrate reductase from Escherichia coli K12. , 1974 .

[56]  D. Oesterhelt,et al.  Morphology, function and isolation of halobacterial flagella. , 1984, Journal of molecular biology.

[57]  M. Sheves,et al.  Controlling the pKa of the bacteriorhodopsin Schiff base by use of artificial retinal analogues. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[58]  C. Englert,et al.  Function and biosynthesis of gas vesicles in halophilicArchaea , 1992, Journal of bioenergetics and biomembranes.

[59]  J. Walker,et al.  Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. , 1985, Journal of molecular biology.

[60]  Nucleotide sequence of the ATPase A- and B-subunits of the halophilic archaebacterium Haloferax volcanii and characterization of the enzyme. , 1995, Biochimica et biophysica acta.

[61]  W. Stoeckenius,et al.  Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. , 1974, The Journal of biological chemistry.

[62]  L. Hochstein,et al.  Purification and properties of a dissimilatory nitrate reductase from Haloferax denitrificans. , 1991, Archives of biochemistry and biophysics.

[63]  G. Schäfer,et al.  Archaebacterial ATPase: studies on subunit composition and quaternary structure of the F1-analogous ATPase from Sulfolobus acidocaldarius. , 1988, Biological chemistry Hoppe-Seyler.

[64]  L. Hochstein Nitrate Reduction in the Extremely Halophilic Bacteria , 1991 .

[65]  E. Bamberg,et al.  Photocurrents of dark‐adapted bacteriorhodopsin on black lipid membranes , 1982 .

[66]  Richard Henderson,et al.  A model for the structure of bacteriorhodopsin based on high resolution electron cryomicroscopy , 1990 .

[67]  Y. Kagawa,et al.  Substrate metal-adenosine 5'-triphosphate chelate structure and stereochemical course of reaction catalyzed by the adenosine triphosphatase from the thermophilic bacterium PS3 , 1983 .

[68]  B. Honig,et al.  An external point-charge model for bacteriorhodopsin to account for its purple color , 1980 .

[69]  M. Lübben,et al.  Cytochromes of archaeal electron transfer chains. , 1995, Biochimica et biophysica acta.

[70]  D. Oesterhelt,et al.  Bacteriorhodopsin is involved in halobacterial photoreception. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[71]  T. Date,et al.  Molecular cloning of the beta-subunit of a possible non-F0F1 type ATP synthase from the acidothermophilic archaebacterium, Sulfolobus acidocaldarius. , 1988, The Journal of biological chemistry.

[72]  B. Schobert,et al.  Hysteretic behavior of an ATPase from the archaebacterium, Halobacterium saccharovorum. , 1989, Journal of Biological Chemistry.

[73]  Y. Mukohata,et al.  ATP synthesis in cell envelope vesicles of Halobacterium halobium driven by membrane potential and/or base-acid transition. , 1986, Journal of biochemistry.

[74]  Y. Mukohata,et al.  A membrane-bound ATPase from Halobacterium halobium: purification and characterization. , 1987, Journal of biochemistry.

[75]  M. Futai,et al.  Amino acid sequence of the alpha and beta subunits of Methanosarcina barkeri ATPase deduced from cloned genes. Similarity to subunits of eukaryotic vacuolar and F0F1-ATPases. , 1989, The Journal of biological chemistry.

[76]  E. J. Bowman,et al.  Relationship of the membrane ATPase from Halobacterium saccharovorum to vacuolar ATPases. , 1991, Archives of biochemistry and biophysics.

[77]  Y. Mukohata,et al.  The H+-translocating ATP synthase in Halobacterium halobium differs from F0F1-ATPase/synthase. , 1987, Journal of Biochemistry (Tokyo).

[78]  A. Oren,et al.  Anaerobic growth of halophilic archaeobacteria by reduction of dimethysulfoxide and trimethylamine N-oxide , 1990 .

[79]  J. Gogarten,et al.  The cDNA sequence of the 69-kDa subunit of the carrot vacuolar H+-ATPase. Homology to the beta-chain of F0F1-ATPases. , 1988, The Journal of biological chemistry.

[80]  D. Oesterhelt,et al.  Phototaxis of Halobacterium salinarium requires a signalling complex of sensory rhodopsin I and its methyl‐accepting transducer HtrI. , 1994, The EMBO journal.

[81]  R A Mathies,et al.  From femtoseconds to biology: mechanism of bacteriorhodopsin's light-driven proton pump. , 1991, Annual review of biophysics and biophysical chemistry.

[82]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[83]  D. Oesterhelt,et al.  Bacterioopsin, haloopsin, and sensory opsin I of the halobacterial isolate Halobacterium sp. strain SG1: three new members of a growing family , 1993, Journal of bacteriology.

[84]  T. Date,et al.  The membrane-associated ATPase from Sulfolobus acidocaldarius is distantly related to F1-ATPase as assessed from the primary structure of its alpha-subunit. , 1988, The Journal of biological chemistry.

[85]  D. Oesterhelt,et al.  Signal transduction in Halobacterium depends on fumarate. , 1990, The EMBO journal.

[86]  M. Mandel,et al.  cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[87]  D. Oesterhelt,et al.  The photochemical cycle of halorhodopsin: absolute spectra of intermediates obtained by flash photolysis and fast difference spectra measurements. , 1987, Biophysical journal.

[88]  L. Hochstein ATP synthesis in Halobacterium saccharovorum: evidence that synthesis may be catalysed by an F0F1-ATP synthase. , 1992, FEMS microbiology letters.

[89]  E. Bamberg,et al.  Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. , 1989, The EMBO journal.

[90]  Activation and inhibition of ATP synthesis in cell envelope vesicles of Halobacterium halobium. , 1987, Journal of biochemistry.

[91]  W. Gärtner,et al.  The photoreaction of active-site-methylated bacteriorhodopsin: an investigation using static and time-resolved infrared difference spectroscopy. , 1990, Biochemistry.

[92]  Lawrence I. Hochstei Chapter 10 The membrane-bound enzymes of the archaea , 1993 .

[93]  D Oesterhelt,et al.  Anaerobic growth of halobacteria. , 1980, Proceedings of the National Academy of Sciences of the United States of America.