A continuation algorithm for planar implicit curves with singularities

Continuation algorithms usually behave badly near to critical points of implicitly defined curves in R^2, i.e., points at which at least one of the partial derivatives vanishes. Critical points include turning points, self-intersections, and isolated points. Another problem with this family of algorithms is their inability to render curves with multiple components because that requires finding first a seed point on each of them. This paper details an algorithm that resolves these two major problems in an elegant manner. In fact, it allows us not only to march along a curve even in the presence of critical points, but also to detect and render curves with multiple components using the theory of critical points.

[1]  Mahesan Niranjan,et al.  Uncertainty in geometric computations , 2002 .

[2]  Raimund Seidel,et al.  On the exact computation of the topology of real algebraic curves , 2005, SCG.

[3]  Christophe Chaillou,et al.  Fast Polygonization of Implicit Surfaces , 2001, WSCG.

[4]  John M. Snyder,et al.  Interval analysis for computer graphics , 1992, SIGGRAPH.

[5]  Josef Schicho,et al.  A Computer Program for the Resolution of Singularities , 2000 .

[6]  Michael Kerber,et al.  Fast and exact geometric analysis of real algebraic plane curves , 2007, ISSAC '07.

[7]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[8]  Guoliang Xu,et al.  Piecewise Rational Approximations of Real Algebraic Curves , 1997 .

[9]  Michael Sagraloff,et al.  Visualizing Arcs of Implicit Algebraic Curves, Exactly and Fast , 2009, ISVC.

[10]  Richard E. Chandler,et al.  A tracking algorithm for implicitly defined curves , 1988, IEEE Computer Graphics and Applications.

[11]  R. Riesenfeld,et al.  Bounds on a polynomial , 1981 .

[12]  George Trapp,et al.  Using Complex Variables to Estimate Derivatives of Real Functions , 1998, SIAM Rev..

[13]  B. Mourrain,et al.  Visualisation of Implicit Algebraic Curves , 2007 .

[14]  Ralph R. Martin,et al.  Affine Arithmetic and Bernstein Hull Methods for Algebraic Curve Drawing , 2002 .

[15]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[16]  Abel J. P. Gomes,et al.  A Generalized Regula Falsi Method for Finding Zeros and Extrema of Real Functions , 2013 .

[17]  Abel J. P. Gomes,et al.  A BSP-based algorithm for dimensionally nonhomogeneous planar implicit curves with topological guarantees , 2009, TOGS.

[18]  Fabrice Rouillier,et al.  Bernstein's basis and real root isolation , 2004 .

[19]  Leonidas J. Guibas,et al.  Article 17 A. J. P. Gomes A BSP -Based Algorithm for Dimensionally Nonhomogeneous (24 pages) J. F. M. Morgado Planar Implicit Curves with Topological Guarantees , 2009 .

[20]  Laureano González-Vega,et al.  Efficient topology determination of implicitly defined algebraic plane curves , 2002, Comput. Aided Geom. Des..

[21]  D. Asimov Notes on the Topology of Vector Fields and Flows , 2003 .

[22]  M SnyderJohn Interval analysis for computer graphics , 1992 .

[23]  Hélio Lopes,et al.  Robust adaptive polygonal approximation of implicit curves , 2002, Comput. Graph..

[24]  Josef Schicho,et al.  Algorithms for Trigonometric Curves (Simplification, Implicitization, Parameterization) , 1998, J. Symb. Comput..

[25]  Bengt Fornberg,et al.  Numerical Differentiation of Analytic Functions , 1981, TOMS.

[26]  Steven Dale Cutkosky,et al.  Resolution of Singularities , 2004 .

[27]  Jules Bloomenthal,et al.  Polygonization of implicit surfaces , 1988, Comput. Aided Geom. Des..

[28]  Ralph R. Martin,et al.  Mathematics of Surfaces XI , 2008 .

[29]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[30]  Katja Bühler,et al.  Implicit linear interval estimations , 2002, SCCG '02.

[31]  Jules Bloomenthal,et al.  An Implicit Surface Polygonizer , 1994, Graphics Gems.

[32]  Jorge Stolfi,et al.  Approximating Implicit Curves on Triangulations with Affine Arithmetic , 2012, 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images.

[33]  Bernard Mourrain,et al.  Regularity Criteria for the Topology of Algebraic Curves and Surfaces , 2007, IMA Conference on the Mathematics of Surfaces.

[34]  Kurt Mehlhorn,et al.  New bounds for the Descartes method , 2005, SIGS.

[35]  Stefan Gnutzmann,et al.  Simplicial pivoting for mesh generation of implicity defined surfaces , 1991, Comput. Aided Geom. Des..