Geometric deep learning

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s). SA '16 Courses, December 05-08, 2016, Macao ACM 978-1-4503-4538-5/16/12. http://dx.doi.org/10.1145/2988458.2988485 Geometric Deep Learning

[1]  Eugenio Tacchini,et al.  Some Like it Hoax: Automated Fake News Detection in Social Networks , 2017, ArXiv.

[2]  David Liben-Nowell,et al.  The link-prediction problem for social networks , 2007 .

[3]  H. Russell Bernard,et al.  Studying Fake News via Network Analysis: Detection and Mitigation , 2018, Lecture Notes in Social Networks.

[4]  Michael J. Black,et al.  FAUST: Dataset and Evaluation for 3D Mesh Registration , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Michael G. Rabbat,et al.  Graph spectral compressed sensing for sensor networks , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[6]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[7]  Daniel Cremers,et al.  Partial Functional Correspondence , 2017 .

[8]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[9]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[10]  S. Mallat A wavelet tour of signal processing , 1998 .

[11]  Stefanos Zafeiriou,et al.  4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications , 2017, CVPR 2017.

[12]  Daniel Cremers,et al.  Partial Matching of Deformable Shapes , 2016, 3DOR@Eurographics.

[13]  Yann LeCun,et al.  Signature Verification Using A "Siamese" Time Delay Neural Network , 1993, Int. J. Pattern Recognit. Artif. Intell..

[14]  Pierre Vandergheynst,et al.  A windowed graph Fourier transform , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).

[15]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[16]  Jürgen Schmidhuber,et al.  Training Very Deep Networks , 2015, NIPS.

[17]  Thomas Brox,et al.  Learning to generate chairs with convolutional neural networks , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Nikos Komodakis,et al.  Learning to compare image patches via convolutional neural networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Leonidas J. Guibas,et al.  Robust single-view geometry and motion reconstruction , 2009, ACM Trans. Graph..

[20]  M. Bronstein,et al.  SHREC’16: Partial Matching of Deformable Shapes , 2016 .

[21]  Iasonas Kokkinos,et al.  Intrinsic shape context descriptors for deformable shapes , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Yann LeCun,et al.  The Loss Surfaces of Multilayer Networks , 2014, AISTATS.

[23]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Jacob Ratkiewicz,et al.  Political Polarization on Twitter , 2011, ICWSM.

[25]  James M. Keller,et al.  Histogram of Oriented Normal Vectors for Object Recognition with a Depth Sensor , 2012, ACCV.

[26]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[27]  Daniel Cremers,et al.  Dense Non-rigid Shape Correspondence Using Random Forests , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Rina Dechter,et al.  Learning While Searching in Constraint-Satisfaction-Problems , 1986, AAAI.

[29]  Sungyong Seo,et al.  CSI: A Hybrid Deep Model for Fake News Detection , 2017, CIKM.

[30]  Yoshua Bengio,et al.  Show, Attend and Tell: Neural Image Caption Generation with Visual Attention , 2015, ICML.

[31]  Rahul Sukthankar,et al.  MatchNet: Unifying feature and metric learning for patch-based matching , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Daniel Cremers,et al.  Non‐Rigid Puzzles , 2016, Comput. Graph. Forum.

[33]  Jürgen Schmidhuber,et al.  Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction , 2011, ICANN.

[34]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[35]  Qi-Xing Huang,et al.  Dense Human Body Correspondences Using Convolutional Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[37]  Pierre Vandergheynst,et al.  Geodesic Convolutional Neural Networks on Riemannian Manifolds , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[38]  Soumith Chintala,et al.  A MultiPath Network for Object Detection , 2016, BMVC.

[39]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[40]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[41]  Ken Perlin,et al.  Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks , 2014, ACM Trans. Graph..

[42]  N. Ambady,et al.  Thin slices of expressive behavior as predictors of interpersonal consequences: A meta-analysis. , 1992 .

[43]  Kenji Kawaguchi,et al.  Deep Learning without Poor Local Minima , 2016, NIPS.

[44]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[45]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[46]  Xavier Bresson,et al.  Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering , 2016, NIPS.

[47]  Bonnie Berger,et al.  Compact Integration of Multi-Network Topology for Functional Analysis of Genes. , 2016, Cell systems.

[48]  Joos Vandewalle,et al.  Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications , 2012 .

[49]  Lise Getoor,et al.  Collective Classification in Network Data , 2008, AI Mag..

[50]  Daniel Cremers,et al.  Anisotropic Laplace-Beltrami Operators for Shape Analysis , 2014, ECCV Workshops.

[51]  Luc Van Gool,et al.  Hough Forests for Object Detection, Tracking, and Action Recognition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Daniel A. Spielman,et al.  Spectral Graph Theory and its Applications , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[53]  Jonathan Masci,et al.  Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Jorge Nocedal,et al.  On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima , 2016, ICLR.

[55]  Xiang Zhang,et al.  OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks , 2013, ICLR.

[56]  Alex Graves,et al.  DRAW: A Recurrent Neural Network For Image Generation , 2015, ICML.

[57]  Pierre Baldi,et al.  The dropout learning algorithm , 2014, Artif. Intell..

[58]  Alex Pentland,et al.  Human-Centred Intelligent Human-Computer Interaction (HCI2): how far are we from attaining it? , 2008, Int. J. Auton. Adapt. Commun. Syst..

[59]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[60]  Joos Vandewalle,et al.  Multi-Valued and Universal Binary Neurons , 2000 .

[61]  Kai Shu Beyond News Contents: The Role of Social Context for Fake News Detection , 2018 .

[62]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[63]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[64]  Joan Bruna,et al.  Deep Convolutional Networks on Graph-Structured Data , 2015, ArXiv.

[65]  Pierre Vandergheynst,et al.  Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.

[66]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[67]  Jürgen Schmidhuber,et al.  Simplifying Neural Nets by Discovering Flat Minima , 1994, NIPS.

[68]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[69]  Vladlen Koltun,et al.  Robust Nonrigid Registration by Convex Optimization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[70]  Claudio Gutierrez,et al.  Survey of graph database models , 2008, CSUR.

[71]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[72]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, SIGGRAPH 2011.

[73]  Huan Liu,et al.  Understanding User Profiles on Social Media for Fake News Detection , 2018, 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR).

[74]  Andrew W. Fitzgibbon,et al.  3D scanning deformable objects with a single RGBD sensor , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[75]  Andrew Zisserman,et al.  Spatial Transformer Networks , 2015, NIPS.

[76]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[77]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[78]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[79]  Verónica Pérez-Rosas,et al.  Automatic Detection of Fake News , 2017, COLING.

[80]  Jinxiang Chai,et al.  Accurate realtime full-body motion capture using a single depth camera , 2012, ACM Trans. Graph..

[81]  Michael G. Rabbat,et al.  Approximating signals supported on graphs , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[82]  Ann B. Lee,et al.  Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[83]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[84]  Sepp Hochreiter,et al.  Self-Normalizing Neural Networks , 2017, NIPS.

[85]  Leonidas J. Guibas,et al.  Map-based exploration of intrinsic shape differences and variability , 2013, ACM Trans. Graph..

[86]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[87]  Pierre Vandergheynst,et al.  Vertex-Frequency Analysis on Graphs , 2013, ArXiv.

[88]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[89]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[90]  Antonio Criminisi,et al.  Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning , 2012, Found. Trends Comput. Graph. Vis..

[91]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[92]  T. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.

[93]  Thomas Brox,et al.  Striving for Simplicity: The All Convolutional Net , 2014, ICLR.

[94]  Niloy J. Mitra,et al.  Learning Semantic Deformation Flows with 3D Convolutional Networks , 2016, ECCV.

[95]  Hans-Peter Seidel,et al.  Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data , 2009, TOGS.

[96]  A. Bronstein,et al.  Learning Spectral Descriptors for Deformable Shape Correspondence , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[97]  Shuchang Zhou,et al.  Exploiting Local Structures with the Kronecker Layer in Convolutional Networks , 2015, ArXiv.

[98]  Max Welling,et al.  Variational Dropout and the Local Reparameterization Trick , 2015, NIPS 2015.

[99]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[100]  Chu-Ren Huang,et al.  Fake News Detection Through Multi-Perspective Speaker Profiles , 2017, IJCNLP.

[101]  Thomas Brox,et al.  FlowNet: Learning Optical Flow with Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[102]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[103]  Matthias Nießner,et al.  3DMatch: Learning the Matching of Local 3D Geometry in Range Scans , 2016, ArXiv.

[104]  Benno Stein,et al.  A Stylometric Inquiry into Hyperpartisan and Fake News , 2017, ACL.

[105]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[106]  Jianxiong Xiao,et al.  Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[107]  Jonathan T. Barron,et al.  3D self-portraits , 2013, ACM Trans. Graph..

[108]  Leo Grady,et al.  Discrete Calculus - Applied Analysis on Graphs for Computational Science , 2010 .

[109]  Sinan Aral,et al.  The spread of true and false news online , 2018, Science.

[110]  Pradeep Ravikumar,et al.  Collaborative Filtering with Graph Information: Consistency and Scalable Methods , 2015, NIPS.

[111]  Joseph J. Lim,et al.  High-fidelity facial and speech animation for VR HMDs , 2016, ACM Trans. Graph..

[112]  Subhransu Maji,et al.  Multi-view Convolutional Neural Networks for 3D Shape Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[113]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[114]  Günther Greiner,et al.  Reconstructing Animated Meshes from Time‐Varying Point Clouds , 2008, Comput. Graph. Forum.

[115]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[116]  Martine D. F. Schlag,et al.  Spectral K-Way Ratio-Cut Partitioning and Clustering , 1993, 30th ACM/IEEE Design Automation Conference.

[117]  Hans-Peter Seidel,et al.  Animation cartography—intrinsic reconstruction of shape and motion , 2012, TOGS.

[118]  Inderjit S. Dhillon,et al.  Weighted Graph Cuts without Eigenvectors A Multilevel Approach , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[119]  Christopher D. Manning,et al.  Fast dropout training , 2013, ICML.

[120]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[121]  Alán Aspuru-Guzik,et al.  Convolutional Networks on Graphs for Learning Molecular Fingerprints , 2015, NIPS.

[122]  Xavier Bresson,et al.  Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks , 2017, NIPS.

[123]  Reza Zafarani,et al.  Fake News: A Survey of Research, Detection Methods, and Opportunities , 2018, ArXiv.

[124]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[125]  M. Bronstein,et al.  SHREC’16: Matching of Deformable Shapes with Topological Noise , 2016 .

[126]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[127]  Suhang Wang,et al.  Fake News Detection on Social Media: A Data Mining Perspective , 2017, SKDD.

[128]  Heinrich Müller,et al.  SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[129]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[130]  Daniel Cremers,et al.  Anisotropic Diffusion Descriptors , 2016, Comput. Graph. Forum.

[131]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[132]  Honglak Lee,et al.  Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations , 2009, ICML '09.

[133]  Federico Tombari,et al.  SHOT: Unique signatures of histograms for surface and texture description , 2014, Comput. Vis. Image Underst..

[134]  Andrew W. Fitzgibbon,et al.  The Vitruvian manifold: Inferring dense correspondences for one-shot human pose estimation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[135]  Leonidas J. Guibas,et al.  Non-Rigid Registration Under Isometric Deformations , 2008 .

[136]  Andrea Torsello,et al.  Matching Deformable Objects in Clutter , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[137]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[138]  Victoria L. Rubin,et al.  Fake News or Truth? Using Satirical Cues to Detect Potentially Misleading News , 2016 .

[139]  Jürgen Schmidhuber,et al.  Understanding Locally Competitive Networks , 2014, ICLR.

[140]  Sven Behnke,et al.  Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition , 2010, ICANN.

[141]  Seunghoon Hong,et al.  Learning Deconvolution Network for Semantic Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[142]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[143]  Alex Graves,et al.  Recurrent Models of Visual Attention , 2014, NIPS.

[144]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[145]  Daniel Cremers,et al.  Matching of Deformable Shapes with Topological Noise , 2016, 3DOR@Eurographics.

[146]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[147]  Yoshua Bengio,et al.  Why Does Unsupervised Pre-training Help Deep Learning? , 2010, AISTATS.

[148]  Jonathan Masci,et al.  Learning shape correspondence with anisotropic convolutional neural networks , 2016, NIPS.

[149]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[150]  Eunsol Choi,et al.  Truth of Varying Shades: Analyzing Language in Fake News and Political Fact-Checking , 2017, EMNLP.

[151]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[152]  Pierre Vandergheynst,et al.  Learning class‐specific descriptors for deformable shapes using localized spectral convolutional networks , 2015, SGP '15.

[153]  Quaid Morris,et al.  Combining many interaction networks to predict gene function and analyze gene lists , 2012, Proteomics.

[154]  Rachel Greenstadt,et al.  Detecting Hoaxes, Frauds, and Deception in Writing Style Online , 2012, 2012 IEEE Symposium on Security and Privacy.

[155]  James Philbin,et al.  FaceNet: A unified embedding for face recognition and clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[156]  Vladlen Koltun,et al.  Multi-Scale Context Aggregation by Dilated Convolutions , 2015, ICLR.

[157]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[158]  Michael J. Black,et al.  Detailed Full-Body Reconstructions of Moving People from Monocular RGB-D Sequences , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[159]  Joan Bruna,et al.  Spectral Networks and Locally Connected Networks on Graphs , 2013, ICLR.

[160]  Sanjiv Kumar,et al.  On the Convergence of Adam and Beyond , 2018 .

[161]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[162]  Sunil K. Narang,et al.  Perfect Reconstruction Two-Channel Wavelet Filter Banks for Graph Structured Data , 2011, IEEE Transactions on Signal Processing.

[163]  Sepp Hochreiter,et al.  Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.

[164]  Christopher Kermorvant,et al.  Dropout Improves Recurrent Neural Networks for Handwriting Recognition , 2013, 2014 14th International Conference on Frontiers in Handwriting Recognition.

[165]  Jürgen Schmidhuber,et al.  Deep Networks with Internal Selective Attention through Feedback Connections , 2014, NIPS.

[166]  Dieter Fox,et al.  DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[167]  Andrew Blake,et al.  Efficient Human Pose Estimation from Single Depth Images , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[168]  Richard Bonneau,et al.  deepNF: deep network fusion for protein function prediction , 2017, bioRxiv.

[169]  Hao Li,et al.  Real-Time Facial Segmentation and Performance Capture from RGB Input , 2016, ECCV.

[170]  Sebastian Thrun,et al.  SCAPE: shape completion and animation of people , 2005, SIGGRAPH '05.

[171]  David Warde-Farley,et al.  GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function , 2008, Genome Biology.

[172]  Wojciech Matusik,et al.  Articulated mesh animation from multi-view silhouettes , 2008, ACM Trans. Graph..